164 research outputs found

    Applying quantitative semantics to higher-order quantum computing

    Full text link
    Finding a denotational semantics for higher order quantum computation is a long-standing problem in the semantics of quantum programming languages. Most past approaches to this problem fell short in one way or another, either limiting the language to an unusably small finitary fragment, or giving up important features of quantum physics such as entanglement. In this paper, we propose a denotational semantics for a quantum lambda calculus with recursion and an infinite data type, using constructions from quantitative semantics of linear logic

    Quantum computations without definite causal structure

    Full text link
    We show that quantum theory allows for transformations of black boxes that cannot be realized by inserting the input black boxes within a circuit in a pre-defined causal order. The simplest example of such a transformation is the classical switch of black boxes, where two input black boxes are arranged in two different orders conditionally on the value of a classical bit. The quantum version of this transformation-the quantum switch-produces an output circuit where the order of the connections is controlled by a quantum bit, which becomes entangled with the circuit structure. Simulating these transformations in a circuit with fixed causal structure requires either postselection, or an extra query to the input black boxes.Comment: Updated version with expanded presentatio

    Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals

    Full text link
    High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat

    Semantics of a Typed Algebraic Lambda-Calculus

    Full text link
    Algebraic lambda-calculi have been studied in various ways, but their semantics remain mostly untouched. In this paper we propose a semantic analysis of a general simply-typed lambda-calculus endowed with a structure of vector space. We sketch the relation with two established vectorial lambda-calculi. Then we study the problems arising from the addition of a fixed point combinator and how to modify the equational theory to solve them. We sketch an algebraic vectorial PCF and its possible denotational interpretations

    Quasi-classical rate coefficient calculations for the rotational (de)excitation of H2O by H2

    Full text link
    The interpretation of water line emission from existing observations and future HIFI/Herschel data requires a detailed knowledge of collisional rate coefficients. Among all relevant collisional mechanisms, the rotational (de)excitation of H2O by H2 molecules is the process of most interest in interstellar space. To determine rate coefficients for rotational de-excitation among the lowest 45 para and 45 ortho rotational levels of H2O colliding with both para and ortho-H2 in the temperature range 20-2000 K. Rate coefficients are calculated on a recent high-accuracy H2O-H2 potential energy surface using quasi-classical trajectory calculations. Trajectories are sampled by a canonical Monte-Carlo procedure. H2 molecules are assumed to be rotationally thermalized at the kinetic temperature. By comparison with quantum calculations available for low lying levels, classical rates are found to be accurate within a factor of 1-3 for the dominant transitions, that is those with rates larger than a few 10^{-12}cm^{3}s^{-1}. Large velocity gradient modelling shows that the new rates have a significant impact on emission line fluxes and that they should be adopted in any detailed population model of water in warm and hot environments.Comment: 8 pages, 2 figures, 1 table (the online material (4 tables) can be obtained upon request to [email protected]

    Rotational Excitation of HC_3N by H_2 and He at low temperatures

    Full text link
    Rates for rotational excitation of HC3N by collisions with He atoms and H2 molecules are computed for kinetic temperatures in the range 5-20K and 5-100K, respectively. These rates are obtained from extensive quantum and quasi-classical calculations using new accurate potential energy surfaces (PES)

    Abstract basins of attraction

    Full text link
    Abstract basins appear naturally in different areas of several complex variables. In this survey we want to describe three different topics in which they play an important role, leading to interesting open problems

    Cap-Gly Proteins at Microtubule Plus Ends: Is EB1 Detyrosination Involved?

    Get PDF
    Localization of CAP-Gly proteins such as CLIP170 at microtubule+ends results from their dual interaction with α-tubulin and EB1 through their C-terminal amino acids −EEY. Detyrosination (cleavage of the terminal tyrosine) of α-tubulin by tubulin-carboxypeptidase abolishes CLIP170 binding. Can detyrosination affect EB1 and thus regulate the presence of CLIP170 at microtubule+ends as well? We developed specific antibodies to discriminate tyrosinated vs detyrosinated forms of EB1 and detected only tyrosinated EB1 in fibroblasts, astrocytes, and total brain tissue. Over-expressed EB1 was not detyrosinated in cells and chimeric EB1 with the eight C-terminal amino acids of α-tubulin was only barely detyrosinated. Our results indicate that detyrosination regulates CLIPs interaction with α-tubulin, but not with EB1. They highlight the specificity of carboxypeptidase toward tubulin

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
    • 

    corecore