11 research outputs found

    Characterization of constitutive and acid-induced outwardly rectifying chloride currents in immortalized mouse distal tubular cells

    Get PDF
    Thiazides block Na+ reabsorption while enhancing Ca2 + reabsorption in the kidney. As previously demonstrated in immortalized mouse DCT (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2 + uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl− channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl− channels, however the nature of these Cl− channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl− current at extracellular pH 7.4. This constitutive Cl− current was more permeable to larger anions (Eisenman sequence I; I− > Br− ≥ Cl−) and was substantially inhibited by > 100 mM [Ca2 +]o, which distinguished it from ClC-K2/Barttin. Moreover, the constitutive Cl− current was blocked by NPPB, along with other Cl− channel inhibitors (DIDS, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH < 5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl− current. This acid-induced Cl− current was also anion permeable (I− > Br− > Cl−), but was distinguished from the constitutive Cl− current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl− current would be particularly relevant in the acidic IMCD (pH < 5.5). To our knowledge, the properties of these Cl− currents are unique and provide the mechanisms to account for the Cl− efflux previously speculated to be present in MDCT cells

    Aldosterone upregulates transient receptor potential melastatin 7 (TRPM7)

    Get PDF
    Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg2+-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg2+ levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed

    Aldosterone, SGK1, and ion channels in the kidney

    No full text
    Hyperaldosteronism, a common cause of hypertension, is strongly connected to Na+, K+, and Mg2+ dysregulation. Owing to its steroidal structure, aldosterone is an active transcriptional modifier when bound to the mineralocorticoid receptor (MR) in cells expressing the enzyme 11β-hydroxysteroid dehydrogenase 2, such as those comprising the aldosterone-sensitive distal nephron (ASDN). One such up-regulated protein, the ubiquitous serum and glucocorticoid regulated kinase 1 (SGK1), has the capacity to modulate the surface expression and function of many classes of renal ion channels, including those that transport Na+ (ENaC), K+ (ROMK/BK), Ca2+ (TRPV4/5/6), Mg2+ (TRPM7/6), and Cl- (ClC-K, CFTR). Here, we discuss the mechanisms by which ASDN expressed channels are up-regulated by SGK1, while highlighting newly discovered pathways connecting aldosterone to nonselective cation channels that are permeable to Mg2+ (TRPM7) or Ca2+ (TRPV4)

    Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse

    No full text
    Non-technical summary  Obesity is known to result from energy intake in excess of expenditure. What is not known is how individuals are able to eat in excess of their energy needs. We show that after chronic consumption of a high fat diet (which causes obesity), intestinal sensory nerves are less responsive to chemicals released from the gut during a meal (cholecystokinin and 5-hydroxytryptamine) as well as to distension of the gut as might occur during a meal. This appears to be due to the fact that the ability of the nerve cells to be excited is impaired. This suggests that consumption of an unhealthy diet that leads to obesity causes decreased signalling from the intestine, which may lead to increased food intake and contribute to further weight gain, or allow the maintenance of excess weight and obesity
    corecore