241 research outputs found

    Novel α-actin gene mutation p.(ala21val) causing familial hypertrophic cardiomyopathy, myocardial noncompaction, and transmural crypts. clinical-pathologic correlation

    Get PDF
    .Background: Mutations of α-actin gene (ACTC1) have been phenotypically related to various cardiac anomalies, including hypertrophic cardiomyopathy and dilated cardiomyopathy and left ventricular (LV) myocardial noncompaction. A novel ACTC mutation is reported as cosegregating for familial hypertrophic cardiomyopathy and LV myocardial noncompaction with transmural crypts. Methods and results: In an Italian family of 7 subjects, 4 aged 10 (II-1), 14 (II-2), 43 (I-4) and 46 years (I-5), presenting abnormal ECG changes, dyspnea and palpitation (II-2, I-4, and I-5), and recurrent cerebral ischemic attack (I-5), underwent 2-dimensional echo, cardiac magnetic resonance, Holter monitoring, and next-generation sequencing gene analysis. Patients II-2 and I-5 with ventricular tachycardia underwent a cardiac invasive study, including coronary with LV angiography and endomyocardial biopsy. In all the affected members, ECG showed right bundle branch block and left anterior hemiblock with age-related prolongation of QRS duration. Two-dimensional echo and cardiac magnetic resonance documented LV myocardial noncompaction in all and in I-4, I-5, and II-2 a progressive LV hypertrophy up to 22-mm maximal wall thickness. Coronary arteries were normal. LV angiography showed transmural crypts progressing to spongeous myocardial transformation with LV dilatation and dysfunction in the oldest subject. At histology and electron microscopy detachment of myocardiocytes were associated with cell and myofibrillar disarray and degradation of intercalated discs causing disanchorage of myofilaments to cell membrane. Next-generation sequencing showed in affected members an unreported p.(Ala21Val) mutation of ACTC. Conclusions: Novel p.(Ala21Val) mutation of ACTC1 causes myofibrillar and intercalated disc alteration leading to familial hypertrophic cardiomyopathy and LV myocardial noncompaction with transmural crypt

    FERALGINE™ a New Oral iron Compound

    Get PDF
    Management of iron deficiency (ID) and iron deficiency anemia (IDA) is primarily focused to remove, when possible, the underlying cause of ID; subsequently its treatment is primary focused on iron stores repletion. Ferrous sulphate (FS) remains the mainstay of treatment and it is recommended as the first-line treatment of ID and IDA in children as in adults by all guidelines of scientific societies. However the effectiveness of FS is largely compromised by increased adverse effects, poor compliance and discontinuation of treatment. A new oral iron source named FERALGINE™ (FBC-A) has been recently developed. This new molecule is a patented co-processed one-to-one ratio compound between Ferrous Bysglicinate Chelate (FBC) and Sodium Alginate (AA), obtained by using a spray drying technology. The data presented in this short review highlight the efficacy and safety of the treatment with FBC-A and support its use in adult patients with IDA. Furthermore the present review also provides preliminary evidence to suggest FBC-A as first-line treatment for ID/IDA in patients with celiac disease (CD) or inflammatory bowel diseases (IBD)

    Echocardiographic features and outcome of restrictive foramen ovale in fetuses with and without cardiac malformations. literature review

    Get PDF
    Foramen ovale is a small communication between the left and the right atrium and its restriction is a rare congenital heart anomaly. There is no consensus on diagnosis and management of fetal restrictive foramen ovale (RFO). In our paper we included 11 studies about fetuses affected by isolated RFO, RFO with D-Transposition of the Great Arteries (dTGA) and RFO with hypoplastic left heart syndrome (HLHS). While fetuses affected from HLHS and dTGA with RFO have a poor prognosis, premature RFO in an otherwise structurally normal heart, if found in later gestation, have an overall good outcome

    Genome-wide definition of promoter and enhancer usage during neural induction of human embryonic stem cells

    Get PDF
    Genome-wide mapping of transcriptional regulatory elements is an essential tool for understanding the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of transcription start sites with genome-wide profiling of histones modifications to map active promoters and enhancers in embryonic stem cells (ESCs) induced to neuroepithelial-like stem cells (NESCs). Our analysis showed that most promoters are active in both cell types while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a "bivalent" histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provides a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and of gene expression programs characterizing the transition from a pluripotent to a neural-restricted cell fate

    T-Cell Receptor Repertoire Sequencing and Its Applications: Focus on Infectious Diseases and Cancer

    Get PDF
    The immune system is a dynamic feature of each individual and a footprint of our unique internal and external exposures. Indeed, the type and level of exposure to physical and biological agents shape the development and behavior of this complex and diffuse system. Many pathological conditions depend on how our immune system responds or does not respond to a pathogen or a disease or on how the regulation of immunity is altered by the disease itself. T-cells are important players in adaptive immunity and, together with B-cells, define specificity and monitor the internal and external signals that our organism perceives through its specific receptors, TCRs and BCRs, respectively. Today, high-throughput sequencing (HTS) applied to the TCR repertoire has opened a window of opportunity to disclose T-cell repertoire development and behavior down to the clonal level. Although TCR repertoire sequencing is easily accessible today, it is important to deeply understand the available technologies for choosing the best fit for the specific experimental needs and questions. Here, we provide an updated overview of TCR repertoire sequencing strategies, providers and applications to infectious diseases and cancer to guide researchers’ choice through the multitude of available options. The possibility of extending the TCR repertoire to HLA characterization will be of pivotal importance in the near future to understand how specific HLA genes shape T-cell responses in different pathological contexts and will add a level of comprehension that was unthinkable just a few years ago

    Nusinersen Induces Disease-Severity-Specific Neurometabolic Effects in Spinal Muscular Atrophy

    Get PDF
    Intrathecal delivery of Nusinersen-an antisense oligonucleotide that promotes survival motor neuron (SMN) protein induction-is an approved therapy for spinal muscular atrophy (SMA). Here, we employed nuclear magnetic resonance (NMR) spectroscopy to longitudinally characterize the unknown metabolic effects of Nusinersen in the cerebrospinal fluid (CSF) of SMA patients across disease severity. Modulation of amino acid metabolism is a common denominator of biochemical changes induced by Nusinersen, with distinct downstream metabolic effects according to disease severity. In severe SMA1 patients, Nusinersen stimulates energy-related glucose metabolism. In intermediate SMA2 patients, Nusinersen effects are also related to energy homeostasis but involve ketone body and fatty acid biosynthesis. In milder SMA3 patients, Nusinersen mainly modulates amino acid metabolism. Moreover, Nusinersen modifies the CSF metabolome of a more severe clinical group towards the profile of untreated SMA patients with milder disease. These findings reveal disease severity-specific neurometabolic signatures of Nusinersen treatment, suggesting a selective modulation of peripheral organ metabolism by this CNS-directed therapy in severe SMA patients

    Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter

    Full text link
    AA amyloidosis is a systemic disease characterized by deposition of misfolded serum amyloid A protein (SAA) into cross-β amyloid in multiple organs in humans and animals. AA amyloidosis occurs at high SAA serum levels during chronic inflammation. Prion-like transmission was reported as possible cause of extreme AA amyloidosis prevalence in captive animals, e.g. 70% in cheetah and 57–73% in domestic short hair (DSH) cats kept in zoos and shelters, respectively. Herein, we present the 3.3 Å cryo-EM structure of AA amyloid extracted post-mortem from the kidney of a DSH cat with renal failure, deceased in a shelter with extreme disease prevalence. The structure reveals a cross-β architecture assembled from two 76-residue long proto-filaments. Despite >70% sequence homology to mouse and human SAA, the cat SAA variant adopts a distinct amyloid fold. Inclusion of an eight-residue insert unique to feline SAA contributes to increased amyloid stability. The presented feline AA amyloid structure is fully compatible with the 99% identical amino acid sequence of amyloid fragments of captive cheetah
    • …
    corecore