1,556 research outputs found

    Detailed Numerical Modeling of Flood Flow in Floodplains with Complex Geometry

    Get PDF
    Numerical modeling of flood flow and the evaluation of flood hazards can be based on various numerical models and modeling techniques. One-dimensional (1D), quasi two-dimensional (1,5 D), two-dimensional (2D) or three-dimensional (3D) variants of numerical models can be used. While 3D models are too demanding to be used for flood flow modeling on personal computers, quasi-2D and 2D models can be more widely used to solve even larger practical problems nowadays. Detailed two-dimensional numerical modeling of flood flow in flooded urbanized areas with complex geometry using the 2D depth averaged model is presented in this paper. The governing equations of the model are expressed with a set of depth averaged Reynolds equations consisting of the continuity equation and two momentum equations for the horizontal velocity components. The eddy viscosity, which influences the horizontal turbulent momentum exchange processes, is modeled with the aid of a depth average version of the two-equation k-e turbulence model. The partial differential equations are solved numerically with a control volume method using fine non-orthogonal curvilinear grids and a non-staggered variable arrangement. The applicability and advantages of this modeling approach for simulating the flood flow in floodplains with complex geometry, and in urban areas, are illustrated by the results of a pilot study in Choceň and Ústí nad Orlicí, towns which were severely affected during the 1997 and 1998 floods in the Czech Republic

    Diagnostics of Various Phenomena in LV Devices Under Real Switching Conditions

    Get PDF
    The article deals with issues to be tackled when performing experiments with low voltage devices under real switching conditions and subsequently discusses various phenomena in an experimental device. The first part describes optimum setting of diagnostic equipment - mainly for optical diagnostic methods. The second part describes some phenomena encountered during switching process under real switching conditions - arc roots movement (cathode and anode spots). These phenomena are not only important for experimental study itself but also form necessary input data for numerical models and their validation

    Investigation of top mass measurements with the ATLAS detector at LHC

    Full text link
    Several methods for the determination of the mass of the top quark with the ATLAS detector at the LHC are presented. All dominant decay channels of the top quark can be explored. The measurements are in most cases dominated by systematic uncertainties. New methods have been developed to control those related to the detector. The results indicate that a total error on the top mass at the level of 1 GeV should be achievable.Comment: 47 pages, 40 figure

    Investigation and Numerical Simulation of a High-Current AC Circuit Breaker

    Get PDF
    The article is devoted to the study of the high-current AC circuit breaker. The results of the study are presented for various configurations of the arc divider. The study includes methods of spectral diagnostics and high-speed camera shooting synchronized with the electrical characteristics of the circuit breaker (current, voltage) in time. The obtained results allow to determine the composition of the plasma and dynamics of changes in the composition of the discharge in time. Calculation of the plasma composition and properties is made according to the obtained data, which makes it possible to take into account the products of circuit breaker materials ablation in numerical simulation. Non-stationary two-dimensional mathematical model with a moving mesh is developed. The obtained results allow to correct and verify the developed mathematical model of the circuit breaker operation. The evaluation of the arc divider influence is presented in the article

    Rotating Gliding Arc: Innovative Source for VOC Remediation

    Get PDF
    The large-scale plasma treatment of waste gas in industrial or municipal conditions requires high efficiency of plasma conversion process at high processing speed, i.e., large volumetric flow. The integration of the plasma unit into existing systems puts demands on the pipe-system compatibility and minimal pressure drop due to adoption of plasma processing step. These conditions are met at the innovative rotating electrode gliding arc plasma unit described in this article. The system consists of propeller-shaped high voltage electrode inside grounded metallic tube. The design of HV electrode eliminates the pressure drop inside the air system, contrary the plasma unit itself is capable of driving the waste gas at volumetric flow up to 300 m3/hr for 20 cm pipe diameter. In the article the first results on pilot study of waste air treatment will be given for selected volatile organic compounds together with basic characteristic of the plasma unit used

    Pressure-induced huge increase of Curie temperature of the van der Waals ferromagnet VI3

    Full text link
    Evolution of magnetism in single crystals of the van der Waals compound VI3 in external pressure up to 7.3 GPa studied by measuring magnetization and ac magnetic susceptibility is reported. Four magnetic phase transitions, at T1 = 54.5 K, T2 = 53 K, TC = 49.5 K, and TFM = 26 K, respectively have been observed at ambient pressure. The first two have been attributed to the onset of ferromagnetism in specific crystal-surface layers. The bulk ferromagnetism is characterized by the magnetic ordering transition at Curie temperature TC and the transition between two different ferromagnetic phases TFM, accompanied by a structure transition from monoclinic to triclinic symmetry upon cooling. The pressure effects on magnetic parameters were studied with three independent techniques. TC was found to be almost unaffected by pressures up to 0.6 GPa whereas TFM increases rapidly with increasing pressure and reaches TC at a triple point at ~ 0.85 GPa. At higher pressures, only one magnetic phase transition is observed moving to higher temperatures with increasing pressure to reach 99 K at 7.3 GPa. In contrast, the low-temperature bulk magnetization is dramatically reduced by applying pressure (by more than 50% at 2.5 GPa) suggesting a possible pressure-induced reduction of vanadium magnetic moment. We discussed these results in light of recent theoretical studies to analyze exchange interactions and provide how to increase the Curie temperature of VI3.Comment: 20 pages, 16 figure

    The 33S(n,α)30Si cross section measurement at n-TOF-EAR2 (CERN) : From 0.01 eV to the resonance region

    Get PDF
    The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n-TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT)
    corecore