121 research outputs found

    The Biological Effect of a Class of Alternating Magnetic Field on Life Field Using Distilled Water as Test Materials

    Get PDF
    This study investigated the biological effect of a class of alternating magnetic field on life field using distilled water as test materials. Extremely low frequency magnetic field (ELF - MF) was carried out using a 50Hz AC power as the source, and a self made copper wire solenoid (magnetic chamber) inside which the sample was placed. A variable transformer was used to vary the current in the magnetic chamber to achieve different field intensities. The results indicate that magnetic field affects the rate of solubility of salts in water as well as an alteration in its pH. This study supports initial reports that extremely low frequency magnetic field alters the physiochemical properties of water. Keywords: magnetic field, life field, distilled water, biological effec

    Level of Radiofrequency (RF) Radiations from GSM Base Stations and its Biological Effects on Albino Mice, Mus musculus

    Get PDF
    Levels of radiofrequency radiations around two global systems for mobile communication (GSM) base stations located in the vicinity of a residential quarter and workplace complex were measured. The effects of the radiofrequency radiations on albino mice placed in exposure cages and located around the base stations over a six months period were carried out. The levels of radiofrequency (RF) radiations around the base stations were found to be between 488.51mV/m to 625.49mV/m compared to 59 mV/m in control stations. The results of the weight change experiment showed that over the 180 days of observation, there was weight gain in the exposed and control mice groups. Statistical comparisons of mean weight changes between exposed mice and control mice showed that there were no significant (P>0.05) differences between the weight of the test animals. The hematological studies revealed an elevation of white blood cell (WBC) counts in mice exposed to RF radiations compared to control group. There was however no significant (P>0.05) difference between the red blood cell counts in the exposed and control mice. There was also no significant (P>0.05) difference in the hemoglobin and glucose levels in the blood of both exposed and control mice groups. The red blood cells in exposed mice were however found to contain a higher number of macrocytes, poikilocytes, polychromatic cells and fewer target cells than the control mice. Histological studies of the heart and kidney of exposed mice showed only slight tissues deformities in kidneys of exposed mice compared to control. The relevance of these findings in setting radiofrequency radiation exposure guidelines and the need for more studies with widely varying biological parameters is very necessary as Nigeria leaps further into the communication age

    The impact of dehydration and hyperthermia on circulatory glutathione metabolism after exercise in the heat with insights into the role of erythrocytes

    Get PDF
    Background: Reduced glutathione (GSH) is one of the main thiols involved in antioxidant defense. Changes in circulatory levels of GSH during exercise are associated with hyperthermia and dehydration. The mechanisms by which these alterations occur are not entirely known. We hypothesize that erythrocytes could be an important source of circulatory GSH during heat stress conditions. We performed two separate experiments to address this hypothesis. Methods: In the first experiment, we sought to investigate the impact of exercise in the heat and dehydration on erythrocyte levels of GSH. A total of 10 men performed 60 min of cycling at 60% VO2peak in the heat (38.0 ± 0.9 °C) or in a control temperate environment (23.0 ± 1.0 °C), both with and without dehydration. Relative humidity ranged from 50 to 70%. Blood samples were taken before and after exercise to measure GSH and oxidized (GSSG) glutathione. In the second experiment, erythrocytes were isolated from blood samples taken at rest and heated in vitro to determine the impact of heat on erythrocyte glutathione content. Tubes with erythrocytes were exposed to water baths at different temperatures; one tube was exposed to a water bath at 35 °C and the other tube to a water bath at 41 °C for a period of 30 min. After exposure to heat, plasma and erythrocytes were extracted for GSH and GSSG analyses. Results: Dehydration decreased circulatory GSH, regardless of ambient temperature (temperate and heat decreased 15.35% and 30.31%, respectively), resulting in an altered redox balance. Heat increased GSH levels in vitro. Conclusion: Our data suggest that dehydration decreases circulatory GSH levels regardless of environmental temperature. In addition, in vitro data suggests that erythrocytes may contribute to the release of GSH during exposure to heat stress

    Physics and The Health Sciences

    Get PDF
    A festschrift honoring Elmer N. Nussbaum, featuring contributors Joseph D. Brian, John C. Lee, David C. Randall, Walter C. Randall, as well as letter excerpts from colleagues and students. Edited by Andrew P. Whipple.https://pillars.taylor.edu/ayres-collection-books/1010/thumbnail.jp

    Transcultural Perspective on Consciousness: A Bridge Between Anthropology, Medicine and Physics

    Get PDF
      The Unesco Chair "Anthropology of Health, biosphere and Healing System" inside the University of Genoa (IT) is a unique experience inside the University of Genoa that stems from a cultural necessity to fill and a wealth of knowledge to preserve health, environment and treatment strategies considered strictly connected in modern medicine. This new, integrated approach contradicts and overcomes the traditional separation between humanities and scientific medicine and treatments. Health and approach to treatment strategies are not uniform around the worlds; the universal baseline is quality assurance of investigation in science The need to establish connections between Medicine, especially in the therapeutic aspect (healing), and all the information already obtained from the mind-matter phenomenology has led to much experimentation and theorizing in this border and transcultural area. The research group formed by anthropologist who have studied altered states of consciousness in different cultures, medical doctors, quantum physicists and molecular biologists will try to define a transcultural perspective on consciousness merging anthropology, medicine and physics.  In particular, the research field site is located in Mayantuyacu, a traditional healing center located in the Peruvian Amazon where the ancient art of ashanika healing is set. Mayantuyacu is situated on the bank of a river with thermal water at 100 ° flowing in the middle of the forest. Around the central Maloca, where is the common life, were built to accommodate malocas other people who come to Mayantuyacu to know and to seek treatment from knowing millennial ashanika and properties of thousands of plants including plants teacher. The following elements were firstly analyzed and considered the bridge from a traditional healing system to a new paradigm in medicine:                1. music called icaros,                2. master plants like ayahuasca involved during the healing ceremonies

    The HL-60 human promyelocytic cell line constitutes an effective in vitro model for evaluating toxicity, oxidative stress and necrosis/apoptosis after exposure to black carbon particles and 2.45 GHz radio frequency

    Get PDF
    The cellular and molecular mechanisms by which atmospheric pollution from particulate matter and/or electromagnetic fields (EMFs) may prove harmful to human health have not been extensively researched. We analyzed whether the combined action of EMFs and black carbon (BC) particles induced cell damage and a pro-apoptotic response in the HL-60 promyelocytic cell line when exposed to 2.45 GHz radio frequency (RF) radiation in a gigahertz transverse electromagnetic (GTEM) chamber at sub-thermal specific absorption rate (SAR) levels. RF and BC induced moderately significant levels of cell damage in the first 8 or 24 h for all exposure times/doses and much greater damage after 48 h irradiation and the higher dose of BC. We observed a clear antiproliferative effect that increased with RF exposure time and BC dose. Oxidative stress or ROS production increased with time (24 or 48 h of radiation), BC dose and the combination of both. Significant differences between the proportion of damaged and healthy cells were observed in all groups. Both radiation and BC participated separately and jointly in triggering necrosis and apoptosis in a programmed way. Oxidative-antioxidant action activated mitochondrial anti-apoptotic BCL2a gene expression after 24 h irradiation and exposure to BC. After irradiation of the cells for 48 h, expression of FASR cell death receptors was activated, precipitating the onset of pro-apoptotic phenomena and expression and intracellular activity of caspase-3 in the mitochondrial pathways, all of which can lead to cell death. Our results indicate that the interaction between BC and RF modifies the immune response in the human promyelocytic cell line and that these cells had two fates mediated by different pathways: necrosis and mitochondria-caspase dependent apoptosis. The findings may be important in regard to antimicrobial, inflammatory and autoimmune responses in humansS

    Приборы и методы измерений запылённости окружающей воздушной среды. Краткий обзор

    Get PDF
    The main characteristics of airborne micro/nanoparticles, their impact on human health and air quality standards are presented. International standards classify microparticles by size (PM10, PM2.5, PM1, UFP), establish maximum allowable concentrations and control methods. Particular attention is paid to carbonand virus-containing microparticles control. To monitor the air environment in enclosed spaces and in transport, the portable sensors of micro-, nanoparticles are required with the ability to classify them by size and electrophysical characteristics.Detection of microparticles includes the sorting of particles entering the sensor by size and material type, subsequent actual detection of particles of the same kind, with subsequent classification by size, electrical and morphological characteristics. Separation of nanoand microparticles by size before detection improves the sensitivity and selectivity of the detector both in size and material. The virtual impactor and dielectrophoresis method are considered for integration in a Lab-on-Chip type sensor. Detection of microparticles is performed by separating the dispersed phase from the aerosol followed by the analysis, or directly in the air flow. The classification of detection methods according to speed and functionality is given. Among the methods allowing detection of micrometer and submicrometer size particles, the most suitable for miniaturization and serial production of Lab-on-Chip sensors are the multi-wavelength photoelectric, MEMS, and capacitor elements.The microelectromechanics, microfluidics and microoptics technologies make it possible to create portable sensor systems of the Lab-on-Chip type to detect particulates matter of micrometer and submicrometer size. A micro-, nanoparticles detector prototype based on alumina technology using MEMS elements for a compact Lab-on-Chip type sensor is presented. The proposed design for multifunctional portable detector of airborne micro/nanoparticles is prospective for industry, transport, medicine, public and residential buildings applications.Представлены основные характеристики переносимых воздухом микро/наночастиц, их влияние на здоровье человека и нормативы качества воздушной среды. Международные стандарты классифицируют микрочастицы по размеру (PM10, PM2,5, PM1, UFP), определяют предельно допустимые концентрации и методики их контроля. Особое внимание уделяется контролю углероди вируссодержащих микрочастиц. Для мониторинга воздушной среды в закрытых помещениях, в транспорте требуются портативные датчики микро-, наночастиц с возможностями их классификации по размеру и электрофизическим характеристикам.Детектирование микрочастиц включает сортировку попадающих в детектор микро/наночастиц по размеру и типу материала и собственно детектирование однотипных частиц с последующей классификацией по размеру, электрофизическим и морфологическим характеристикам. Разделение нано и микрочастиц по размеру перед детектированием повышает чувствительность и селективность детектора как по размерам, так и по материалу. Для интеграции в сенсоре Lab-on-Chip типа рассмотрены методы виртуального импактора и диэлектрофореза. Детектирование микрочастиц осуществляется с выделением дисперсной фазы из аэрозоля с последующим анализом либо непосредственно в воздушном потоке. Приведена классификация методов детектирования по быстродействию и функциональным возможностям. Среди методов детектирования частиц микронных и субмикронных размеров наиболее пригодны для миниатюризации и серийного изготовления Lab-on-Chip сенсоров мультиволновые фотоэлектрические, МЭМС, конденсаторные элементы.Технологии микроэлектромеханики, микрофлюидики и микрооптики позволяют создавать портативные сенсорные системы типа Lab-on-Chip для детектирования твёрдых частиц микронного и субмикронного размера. Представлен прототип детектора микро-, наночастиц на основе алюмооксидной технологии с использованием МЭМС элементов для компактного сенсора Lab-on-Сhip типа. Предлагаемая конструкция многофункционального портативного детектора микро/наночастиц воздушной (газовой) среды перспективна для применения в промышленности, транспорте, медицине, общественных и жилых помещениях

    Cytological effects of pulsed electromagnetic fields and static magnetic fields induced by a therapeutic device on in vivo exposed rats

    Get PDF
    Background: There is a trend towards the use of magnetic fields in medicine. Pulsed electromagnetic fields (PEMFs) technology was based upon 20 years of fundamental studies on the electromechanical properties of bone and other connective tissues. More recently, these magnetic fields have been used to treat several health conditions. There remains continuing concern that exposure to electromagnetic devices may cause adverse effects. The aim of the present study was to investigate the cytological effects induced in rats exposed in a patented medical device that uses PEMFs combined with static magnetic fields (SMFs).Material and Methods: Thirty sexually mature 14-week-old male and female Sprague Dawley rats were distributed into three groups: (a) 5 males and 5 females (independently) exposed to PEMFs combined with SMFs, (b) animals treated with SMFs only, and (c) non-exposed animals. Acridine orange fluorescent-staining micronucleus test and male germ cells analysis were performed according to standardized techniques.Results: A lack of evidence for alterations on micronucleus frequency, on polychromatic erythrocytes percentage, and on sperm counts and morphological characteristics of male germ cells were found in mature rats exposed to PEMFs medical device compared to non-exposed animals.Conclusions: This study suggests that the applied magnetic field generated in a therapeutic device did not have any detectable cytotoxic or genotoxic effect in exposed rats. In view of these findings and the contradictory reports in the literature, it is necessary to carry out more research to help clarify the controversy concerning cytogenotoxic risk associated with therapeutic magnetic fields exposures.Keywords: Cytotoxicity, pulsed electromagnetic fields, static magnetic fields, micronuclei, sperm abnormalitie

    Development of hazard analysis and critical control points (HACCP) procedures to control organic chemical hazards in the agricultural production of raw food commodities

    Get PDF
    Hazard Analysis by Critical Control Points (HACCP) is a systematic approach to the identification, assessment and control of hazards in the food chain. Effective HACCP requires the consideration of all possible hazards, i.e., chemical, microbiological and physical. However, current procedures focus primarily upon microbiological and physical hazards, and, to date, chemical aspects of HACCP have received relatively little attention. Consequently, this report discusses the application of HACCP to organic chemical contaminants and the particular problems that are likely to encounter within the agricultural sector. It also presents generic templates for the development of organic chemical contaminant HACCP procedures for selected raw food commodities, i.e., cereal crops, raw meats and milk

    Nanoparticles and Neurotoxicity

    Get PDF
    Humans are exposed to nanoparticles (NPs; diameter < 100 nm) from ambient air and certain workplaces. There are two main types of NPs; combustion-derived NPs (e.g., particulate matters, diesel exhaust particles, welding fumes) and manufactured or engineered NPs (e.g., titanium dioxide, carbon black, carbon nanotubes, silver, zinc oxide, copper oxide). Recently, there have been increasing reports indicating that inhaled NPs can reach the brain and may be associated with neurodegeneration. It is necessary to evaluate the potential toxic effects of NPs on brain because most of the neurobehavioral disorders may be of environmental origin. This review highlights studies on both combustion-derived NP- and manufactured or engineered NP-induced neuroinflammation, oxidative stress, and gene expression, as well as the possible mechanism of these effects in animal models and in humans
    corecore