6 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    El trasplante autólogo de células mesoteliales como acelerador y modificador de la cicatrización cutánea en ratas Autologous mesothelial cells transplantation as accelerator and skin healing modifier in rats

    No full text
    El propósito del presente estudio fue comprobar si el autotrasplante de células mesoteliales peritoneales en heridas de espesor total en ratas acelera y modifica el proceso de cicatrización cutánea normal, basándonos en la teoría de que las células mesoteliales provenientes de tejidos como el peritoneo, pleura o pericardio, son responsables de uno de los procesos de cicatrización más rápidos y sintetizan varios factores estimulantes y quimiotácticos de la cicatrización (causantes de las adherencias intraabdominales), además de que poseen la capacidad de diferenciarse en otras series celulares (plasticidad). Diseñamos un estudio experimental, analítico, longitudinal, prospectivo y comparativo, en el Laboratorio de Cirugía Experimental del Centro Médico ABC Observatorio, México D.F. (México). Se emplearon 15 ratas cepa Wistar, divididas en 2 grupos: Grupo I (n=5) en el que previa anestesia general, se extirparon 3 mm. de diámetro de piel de la región dorsal mediante técnica microquirúrgica y cierre por segunda intención; y Grupo II (n=10) en el que se realizó minilaparotomía con escisión de peritoneo parietal, cierre primario de la misma, escisión de piel de espesor total en región dorsal de 3 mm. de diámetro y colocación del autoinjerto peritoneal en la herida dorsal. En el análisis histológico se revisaron 6 variables: colágeno, fibroblastos, número de vasos, macrófagos, células inflamatorias y grado de retracción, para puntualizar integralmente el tipo y características de la cicatrización en ambos grupos. El análisis estadístico de datos se elaboró con Statistical Package of Social Sciences 17.0. Se realizó estadística descriptiva por medio de medidas de frecuencia, de tendencia central y de dispersión. Los resultados mostraron que los individuos del Grupo I presentaron mayor inflamación, fibrosis y retracción, datos compatibles con una fase proliferaría de cicatrización. En el Grupo II se encontró menor inflamación y fibrosis, mayor colágeno y datos compatibles con una fase de remodelación. En conclusión, el autotrasplante de células mesoteliales peritoneales en heridas de espesor total acelera el proceso de cicatrización cutánea normal en ratas ya que disminuye la inflamación, la fibrosis y aumenta el colágeno.<br>The purpose of this study was to verify if the autologous peritoneal mesothelial cells in full thickness wounds on rats, speed up and adjust the normal skin healing process. Based on the theory that mesothelial cells from tissues such as peritoneum, pleura or pericardium, are responsible for one of the faster healing process and synthesize stimulating wound healing and chemotactical factors (hence the genesis of surgical adhesions), besides possessing the ability to differentiate into other cell series (plasticity). We designed a pilot, analytical, longitudinal, prospective and comparative study in the Laboratory of Experimental Surgery at The American British Cowdray Medical Center, Mexico City (México). Were used 15 Wistar rats which were divided into 2 groups: Group I (n = 5) where after general anesthesia, skin removed 3 mm in diameter with microsurgical technique in the back and was close by secondary intention; and Group II or experimental group (n = 10) where laparotomy was performed with excision of the parietal peritoneum and primary closure, excision of full thickness skin on the dorsal surface of 3mm diameter and peritoneal autograft placement on the dorsal wound. In histological analysis, were reviewed 6 variables: collagen, fibroblasts, number of vessels, macrophages, inflammatory cells and retraction, to point out fully the nature and characteristics of healing in both groups. For the statistical analysis we used Statistical Package for Social Sciences 17.0. The descriptive statistics was made using frequency measures of central tendency and dispersion. The results showed that the Group I rats, had increased inflammation, fibrosis and retraction, data support a proliferative phase of healing. In the Group II or experimental were found less inflammation and fibrosis, increased collagen and data consistent with a remodeling phase. In conclusion, we found that autologous peritoneal mesothelial cells in full thickness wounds accelerates the normal skin healing in rats by decreasing inflammation, fibrosis and increased collagen

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background: Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods: This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was coprioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low-middle-income countries. Results: In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of 'single-use' consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low-middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion: This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high- and low-middle-income countries
    corecore