127 research outputs found

    In situ quantification of CH4 bubbling events from a peat soil using a new infrared laser spectrometer

    Get PDF
    International audienceCH4 emissions from peatlands are space- and time-dependent. The variety of efflux routes contributes to these variabilities. CH4 bubbling remains difficult to investigate since it occurs on a timescale of seconds. The aims of this study were to test the capacity of a recently built infrared high resolution spectrometer, SPIRIT (SPectrometre Infra-Rouge In situ Troposphérique), to (1) measure in situ CH4 fluxes, (2) observe online bubbling events with quantification of CH4 emission fluxes corresponding to this very sudden degassing event. Material and methods: The closed dynamic chamber method was used and the gas concentration was measured every 1.5 seconds. Emission fluxes were calculated by the accumulation rate of CH4 against time. Measurements were undertaken during daytime in March 2009 and during day- and nighttime in May 2009, in a bare peat area, temporarily forming a shallow pool. Results and discussion: The results show that the CH4 emissions estimated with the SPIRIT ranged from 2.79 to 86.0 mg CH4-C m-2 h-1. These values are consistent with those already published. The high emissions, both through diffusion and bubbling, were on the same order as the emissions estimated in natural shallow pools. During daytime, CH4 bubbling was higher in May (56.2% of the total emission) than in March (40.7%) probably because of increased CH4 production and accumulation in peat. In May, bubbling was higher at nighttime (68.6%) than in daytime (56.2%). This has an important implication for carbon budget assessment in peatlands, particularly in boreal areas. Conclusions: The recently built infrared spectrometer, SPIRIT, was able to reliably measure CH4 fluxes and quantify CH4 flux during the degassing of a bubble. The emissions obtained are in agreement with previously published data using other measurement techniques. The results of this preliminary work highlight (1) the importance of shallow pools in peatland CH4 emissions, (2) the sensitivity of such fluxes to atmospheric pressure, a relation that has not been fully investigated or taken into account in assessing peatland carbon balance

    INTRUSION OF RECENT AIR IN POLAR STRATOSPHERE DURING SUMMER 2009 REVEALED BY BALLOON-BORNE IN SITU CO MEASUREMENTS

    Get PDF
    International audienceThe SPIRALE (Spectroscopie Infa-Rouge par Absorption de Lasers Embarqués) balloon-borne instrument has been launched twice within 17 days in the polar region (Kiruna, Sweden, 67.9°N-21.1°E) during summer, at the beginning and at the end of August 2009. In situ measurements of several trace gases have been performed including CO and O 3 between 10 and 34 km height, with very high vertical resolution (~5 m). The both flight results are compared and the CO stratospheric profile of the first flight presents specific structures associated with mid-latitude intrusion in the lowest stratospheric levels. Their interpretation is made with the help of results from several modeling tools (MIMOSA and FLEXTRA) and available satellite data (IASI). We also used the O 3 profile correlated with CO to calculate the proportion of recent air in the polar stratosphere. The results indicate the impact of East Asia urban pollution on the chemistry of polar stratosphere in summer

    Evidence of convective transport in tropical West Pacific region during SHIVA experiment

    Get PDF
    Air masses in the convective outflows of four large convective systems near Borneo Island in Malaysia were sampled in the height range 11–13 km within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) FP7 European project in November and December 2011. Correlated enhancements of CO, CH4 and the short-lived halogen species (CH3I and CHBr3) were detected when the aircraft crossed the anvils of the four systems. These enhancements were interpreted as the fingerprint of vertical transport from the boundary layer by the convective updraft and then horizontal advection in the outflow. For the four observations, the fraction f of air from the boundary layer ranged between 15 and 67%, showing the variability in transport efficiency depending on the dynamics of the convective system

    A portable infrared laser spectrometer for flux measurements of trace gases at the geosphere-atmosphere interface

    No full text
    International audienceA portable infrared laser absorption spectrometer named SPIRIT (SPectrom'etre Infra-Rouge In situ Troposph'erique) has been set up for the simultaneous flux measurements of trace gases at the geosphere-atmosphere interface. It uses a continuous wave distributed feedback room temperature quantum cascade laser and a patented new optical multi-pass cell. The aim of SPIRIT field studies is to get a better understanding of land and water bodies to atmosphere exchange mechanisms of greenhouse gases (GHG). The analytical procedures to derive concentrations and fluxes are described, as well as the performances of the instrument under field conditions. The ability of SPIRIT to assess space and time dependence emissions of two GHG--nitrous oxide (N2O) and methane (CH4)--for different types of ecosystems is demonstrated through in situ measurements on peatland, on fertilized soil, and on water body systems. The objectives of these investigations and preliminary significant results are reported

    Aerosol influences on low-level clouds in the West African monsoon

    Get PDF
    Low-level clouds (LLC) cover a wide area of southern West Africa (SWA) during the summer monsoon months, and have an important cooling effect on the regional climate. Previous studies of these clouds have focused on modelling and remote sensing via satellite. We present the first comprehensive set of regional, in situ measurements of cloud microphysics, taken during June – July 2016, as part of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) campaign, assessing spatial and temporal variation in the properties of these clouds. LLC developed overnight and mean cloud cover peaked a few hundred kilometres inland around 10:00 local solar time (LST), before clouds began to dissipate and convection intensified in the afternoon. Additional sea breeze clouds developed near the coast in the late morning, reaching a maximum extent around 12:00 LST. Regional variation in LLC cover was largely determined by the modulation of the cool maritime inflow by the local orography, with peaks on the upwind side of hills and minima on the leeward sides. In the broad-scale cloud field, no lasting impacts related to anthropogenic aerosol were observed downwind of major population centres. The boundary layer cloud drop number concentration (CDNC) was locally variable inland, ranging from 200 to 840 cm−3 (10th and 90th percentiles at standard temperature and pressure), but showed no systematic regional variations. Enhancements were seen in pollution plumes from the coastal cities, but were not statistically significant across the region. The majority of accumulation mode aerosols, and therefore cloud condensation nuclei, were from ubiquitous biomass burning smoke transported from the southern hemisphere. Consequently, all clouds measured (inland and offshore) had significantly higher CDNC and lower effective radius than clouds over the remote south Atlantic from literature. A parcel model sensitivity analysis showed that doubling or halving local emissions only changed the calculated CDNC by 13–22 %, as the high background meant local emissions were a small fraction of total aerosol. As the population of SWA grows, local emissions are expected to rise. Biomass burning smoke transported from the southern hemisphere is likely to dampen any effect of these increased local emissions on cloud-aerosol interactions. An integrative analysis between local pollution and Central African biomass burning emissions must be considered when predicting anthropogenic impacts on the regional cloud field during the West African monsoon

    Validation of MIPAS HNO3 operational data

    Get PDF
    Nitric acid (HNO3) is one of the key products that are operationally retrieved by the European Space Agency (ESA) from the emission spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT. The product version 4.61/4.62 for the observation period between July 2002 and March 2004 is validated by comparisons with a number of independent observations from ground-based stations, aircraft/balloon campaigns, and satellites. Individual HNO3 profiles of the ESA MIPAS level-2 product show good agreement with those of MIPAS-B and MIPAS-STR (the balloon and aircraft version of MIPAS, respectively), and the balloon-borne infrared spectrometers MkIV and SPIRALE, mostly matching the reference data within the combined instrument error bars. In most cases differences between the correlative measurement pairs are less than 1 ppbv (5-10%) throughout the entire altitude range up to about 38 km (similar to 6 hPa), and below 0.5 ppbv (15-20% or more) above 30 km (similar to 17 hPa). However, differences up to 4 ppbv compared to MkIV have been found at high latitudes in December 2002 in the presence of polar stratospheric clouds. The degree of consistency is further largely affected by the temporal and spatial coincidence, and differences of 2 ppbv may be observed between 22 and 26 km (similar to 50 and 30 hPa) at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Similar features are also observed in the mean differences of the MIPAS ESA HNO3 VMRs with respect to the ground-based FTIR measurements at five stations, aircraft-based SAFIRE-A and ASUR, and the balloon campaign IBEX. The mean relative differences between the MIPAS and FTIR HNO3 partial columns are within +/- 2%, comparable to the MIPAS systematic error of similar to 2%. For the vertical profiles, the biases between the MIPAS and FTIR data are generally below 10% in the altitudes of 10 to 30 km. The MIPAS and SAFIRE HNO3 data generally match within their total error bars for the mid and high latitude flights, despite the larger atmospheric inhomogeneities that characterize the measurement scenario at higher latitudes. The MIPAS and ASUR comparison reveals generally good agreements better than 10-13% at 20-34 km. The MIPAS and IBEX measurements agree reasonably well (mean relative differences within +/- 15%) between 17 and 32 km. Statistical comparisons of the MIPAS profiles correlated with those of Odin/SMR, ILAS-II, and ACE-FTS generally show good consistency. The mean differences averaged over individual latitude bands or all bands are within the combined instrument errors, and generally within 1, 0.5, and 0.3 ppbv between 10 and 40 km (similar to 260 and 4.5 hPa) for Odin/SMR, ILAS-II, and ACE-FTS, respectively. The standard deviations of the differences are between 1 to 2 ppbv. The standard deviations for the satellite comparisons and for almost all other comparisons are generally larger than the estimated measurement uncertainty. This is associated with the temporal and spatial coincidence error and the horizontal smoothing error which are not taken into account in our error budget. Both errors become large when the spatial variability of the target molecule is high.Peer reviewe

    N2_2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018

    Get PDF
    Nitrous oxide (N2_2O) is the fourth most important greenhouse gas in the atmosphere and is considered the most important current source gas emission for global stratospheric ozone depletion (O3_3). It has natural and anthropogenic sources, mainly as an unintended by-product of food production activities. This work examines the identification and quantification of trends in the N2_2O concentration from the middle troposphere to the middle stratosphere (MTMS) by in situ and remote sensing observations. The temporal variability of N2_2O is addressed using a comprehensive dataset of in situ and remote sensing N2_2O concentrations based on aircraft and balloon measurements in the MTMS from 1987 to 2018. We determine N2_2O trends in the MTMS, based on observations. This consistent dataset was also used to study the N2_2O seasonal cycle to investigate the relationship between abundances and its emission sources through zonal means. The results show a long-term increase in global N2_2O concentration in the MTMS with an average of 0.89 ± 0.07 ppb/yr in the troposphere and 0.96 ± 0.15 ppb/yr in the stratosphere, consistent with 0.80 ppb/yr derived from ground-based measurements and 0.799 ± 0.024 ppb/yr ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) satellite measurements

    N2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018

    Get PDF
    Nitrous oxide (N2O) is the fourth most important greenhouse gas in the atmosphere and is considered the most important current source gas emission for global stratospheric ozone depletion (O3 ). It has natural and anthropogenic sources, mainly as an unintended by-product of food production activities. This work examines the identification and quantification of trends in the N2O concentration from the middle troposphere to the middle stratosphere (MTMS) by in situ and remote sensing observations. The temporal variability of N2O is addressed using a comprehensive dataset of in situ and remote sensing N2O concentrations based on aircraft and balloon measurements in the MTMS from 1987 to 2018. We determine N2O trends in the MTMS, based on observations. This consistent dataset was also used to study the N2O seasonal cycle to investigate the relationship between abundances and its emission sources through zonal means. The results show a longterm increase in global N2O concentration in the MTMS with an average of 0.89 ± 0.07 ppb/yr in the troposphere and 0.96 ± 0.15 ppb/yr in the stratosphere, consistent with 0.80 ppb/yr derived from ground-based measurements and 0.799 ± 0.024 ppb/yr ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) satellite measurements

    Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)

    Full text link
    The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements

    Transport et chimie d'espèces soufrées et bromées dans la haute troposphère et basse stratosphère diagnostiqués par des mesures sous ballon et en avion et par modélisation

    No full text
    Le phénomène de destruction de l ozone est un sujet vaste mettant en scène de nombreux processus. Il a pour origine l émission de composés dits gaz sources (SGs) dans la troposphère. Récemment, les espèces à très courte durée de vie (VSLS) ont été identifiées comme SGs possibles. Cependant, elles ne possèdent pas un temps de vie suffisamment long pour atteindre directement la stratosphère. Les VSLS se dégradent au cours de leur transport, conduisant à des composés intermédiaires, les gaz produits (PGs). Les SGs et les PGs des VSLS vont entrer dans la stratosphère au niveau des régions équatoriales où règne un transport vertical rapide, la convection. Les SGs à temps de vie plus long peuvent accéder à la stratosphère par tous les types de transport possibles. Une fois dans la stratosphère, les SGs et PGs vont être convertis en espèces réactives capables de détruire l ozone. Cette thèse présente l étude des différentes étapes se produisant avant la destruction de l ozone : l émission et le transport des SGs dans l atmosphère, leur chimie de dégradation au cours de leur transport et enfin leur contribution à la destruction de l ozone. Les traceurs chimiques tels que CO sont tout d abord utilisés pour mettre en évidence le transport des SGs et PGs de la troposphère à la stratosphère. Puis, deux études décrivant 2 types d espèces différentes, entrant dans le processus de destruction de l ozone, sont présentées : pour OCS (sulfure de carbonyle) et les VSLS bromés (CHBr3 et CH2Br2). OCS est l un des principaux précurseurs d aérosols sulfatés présents dans la stratosphère catalysant la destruction de l ozone par chimie hétérogène. Cependant, sa contribution à cette couche comporte de nombreuses incertitudes. Ses sources d émissions, sa répartition avec la latitude et sa contribution à la couche d aérosols sulfatés sont présentées. La contribution des VSLS bromées au brome de la stratosphère est une question en cours de résolution. Leur chimie au cours de leur transport dans l atmosphère est décrite de manière détaillée.Ozone depletion is a complex subject involving several processes starting by the emission of the sources gases (SGs) in the lower troposphere. Recently the VSLS (very short lived substances) have been identified as potential SGs. However they do not have a lifetime long enough to reach directly the stratosphere. During the transport, the VSLS undergo degradation leading to products gases (PGs). The SGs and PGs of the VSLS reach the stratosphere in the Tropical region where a rapid vertical transport occurs, the convection. The SGs with longer lifetime can reach the stratosphere by any transport pathway from the location of their emissions. Once in stratosphere the SGs and PGs will be converted into reactive species able to deplete ozone. This thesis presents the study of the several steps occurring before the ozone depletion: SGs emission, SGs and PGs transport into the atmosphere, the chemical degradation occurring during their transport and finally their contribution to the ozone depletion. First, chemical tracers, as CO, are used to highlight the main pathways from the troposphere to the stratosphere. Then two studies of two different types of species entering in the process of ozone destruction are presented: for OCS (carbonyl sulfide) and the brominated VSLS (CHBr3 et CH2Br2). OCS is one of the sulfate aerosols precursors catalyzing the ozone depletion. However, OCS contribution to this layer has some uncertainties. OCS emission sources, the latitude repartition and the contribution to the sulfate aerosols are presented. The contribution of the brominated VSLS to the stratospheric bromine is a key issue that being almost resolved. The brominated VSLS chemical degradation during the atmospheric transport will be described in detail.ORLEANS-SCD-Bib. electronique (452349901) / SudocSudocFranceF
    corecore