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Abstract

Air masses in the convective outflows of four large convective systems near Borneo Island
in Malaysia were sampled in the height range 11-13km within the frame of the SHIVA
(Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) FP7 European project in
November and December 2011. Correlated enhancements of CO, CH, and the short-lived
halogen species (CH;I and CHBr;) were detected when the aircraft crossed the anvils of the
four systems. These enhancements were interpreted as the fingerprint of vertical transport
from the boundary layer by the convective updraft and then horizontal advection in the
outflow. For the four observations, the fraction f of air from the boundary layer ranged
between 15 and 67%, showing the variability in transport efficiency depending on the
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I. Introduction

The composition of the tropical upper troposphere (UT)
is affected by the efficiency of the convective transport
of chemical species (Fueglistaler et al., 2009). Trop-
ical deep convection can efficiently transport surface
emitted compounds from the lower troposphere into the
tropical tropopause layer (TTL) altitude range (Marécal
et al., 2006). Since in tropical regions large emissions of
halogenated very short-lived species (VSLS) coincide
with deep convection, one may expect rapid transport
of VSLS into the TTL. Indeed, an efficient transport
of chemical tracers from polluted air masses (Bechara
et al., 2010) or biogenic sources from the oceans such
as halogenated VSLS (CHBr;, CH,Br,, CH;1, etc.: Sala
et al., 2014; Tegtmeier et al., 2013) was observed and
modelled (Navarro et al., 2015; Werner et al., 2017).

In the last decades, several field campaigns [such
as SHIVA — Stratospheric Ozone: Halogen Impacts in
a Varying Atmosphere, Sala et al., 2014, Fuhlbriigge
et al., 2016; TC4 (www.nasa.gov/mission_pages/TC4);
ATTREX, Jensen et al. 2015] and modelling studies
(Hossaini et al., 2012) focused on determining the con-
tribution of the VSLS to the bromine burden in the upper
troposphere and lower stratosphere (UTLS). Observa-
tional campaigns can only address the transport into the
UT on an event-like basis but they are of high inter-
est because the convection parameterisation is a major
source of uncertainty in chemistry transport models
(Arteta et al., 2009; Hoyle et al., 2011). Previous obser-
vational studies of convective outflows at mid-latitudes
(Bertram et al., 2007) and in the tropics (Ray et al,
2004) reported an effective transport of short-lived trace
gases (Cohan et al., 1999; Bechara et al., 2010) by
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convection from the boundary layer (BL) into the UT.
These studies showed that a fraction of 20—-40% of BL
air was present in individual convective plumes trans-
ported rapidly to the UT.

One of the objectives of the SHIVA FP7 European
project was the investigation of the atmospheric trans-
port of VSLS from the BL into the UTLS. The cam-
paign took place in the tropical West Pacific during
the boreal winter monsoon in November and December
2011 when strong convective transport is expected to
occur (e.g. Levine et al., 2007; Aschmann et al., 2009;
Liang et al., 2014). Here, we present airborne measure-
ments for four mesoscale convective events indicating
enhanced UT CO and CH, volume mixing ratios (vmr)
that directly correlate with CHBr; and CH;I enhance-
ments when the aircraft passed the anvil of convective
cumulus clouds. The fraction of air originating from the
BL is calculated by analysis of the CO enhancements.

The SHIVA campaign and instruments are presented
in Section 2. In Section 3, we discuss the meteoro-
logical conditions of the flights and the detection of
convective transport and its influence on CO and CH,
concentrations. Implications for the vertical transport
for VSLS are also addressed. Section 4 concludes the
study.

2. SHIVA field campaign
and measurements

2.1. Measurement campaign

The SHIVA aircraft campaign took place in Malaysia
between 16 November and 11 December 2011. Using
the German Aerospace agency (DLR) Falcon-20 air-
craft, 16 research flights were conducted from Miri
(Malaysia) airport in northwestern Borneo. In the
present study, the results of four flights performed
on 19 November (FIOINOV), 9 December 2011
(FOODEC) and two on 11 December (F11DECa and
F11DECDb) are described in Appendix S1 (Support-
ing Information). The RV Sonne cruise started on
15 November in Singapore, passed near the northern
coast of Borneo and ended in Manila, Philippines on
29 November. Measurements on Sonne are used to
estimate the variability of halocarbons concentration
in the BL.

2.2. Experimental method

The airborne CO and CH, measurements were per-
formed with the SPIRIT instrument (Catoire et al.,
2017), and CHBr; and CH;I with the GHOST instru-
ment (Sala eral., 2014). Additionally, whole air
samples taken in the RV Sonne were analysed for
halocarbons, CO and CH,. More detail about instru-
mentation is provided in Appendix S1. Relative
humidity from the Falcon-20 instrument and webcam
imagery from mini-DOAS instrument (GroBmann,
2014) are used to study the convective condition.
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3. Results and discussion

3.1. Meteorological situation of the flights

Figure 1 depicts the flight tracks together with the
brightness temperatures measured by the 11-xm chan-
nel IR108 from on board the Japanese geostationary
satellite MTSAT-2. Additionally, cloud height is deter-
mined based on Hamada and Nishi (2010) and Iwasaki
et al. (2010) (not shown).

Figure 1(a) indicates the presence of a well-developed
convective system around 6°N and 115.5°E during
research flight FIONOV that reached a maximum
height of ~16+0.5 km in altitude with an extended
anvil on its west side reaching 14.5+0.5 km. For
FO9DEC, a convective system with a smaller horizon-
tal extent was detected at around 5.5°N and 118.5°E
(Figure 1(b)). The convective part of the system reached
~15.5 + 1 km altitude and was embedded in stratiform
clouds with maximum height ~13.5+1.5km. In
F11DECa (Figure 1(c)), a well-developed convective
system was probed between 1°—2°N and 106°-107°E.
The cloud top altitude for this system reached a max-
imum of ~17+0.5 km. The convection cell lasted
throughout the day and was again probed during the
back flight from Singapore to Miri in the afternoon
for F11DECb (Figure 1(d)), though with a weakened
strength.

3.2. Impact of deep convection on trace gases
3.2.1. COand CH,

Figures 2—4 show CO and CH, measured by the
SPIRIT instrument. In all cases when the aircraft
crossed convective outflows (period determined by
webcam data, relative humidity and brightness temper-
ature, see Figure 2), the mixing ratios of the measured
tracers are increased. In the next section, such mea-
surements are defined as [X]ypeony, and the lower
tracer mixing ratios observed outside of the convective
system are defined as [X]yr. CO and CH, are mainly
emitted from anthropogenic sources in the BL. The
sudden increases of [X]ypcony» larger than the UT
mixing ratios ([X]yp), i.e. between 15 and 60 pbbv for
CO and between 20 and 50 ppbv for CH,, are thus
indicative of transport of polluted air from the BL
into the UT. Such enhancements of BL tracers due to
convection and affecting the UT composition have also
been previously reported by Bechara et al. (2010) and
Borbon et al. (2012).

3.2.2. Fraction of BL air detected in the UT

CO has proven to be a particularly good tracer to
study convection due to its source at the surface and
tropospheric lifetime of 1-3 months (Dessler, 2002).
Following Bertram et al. (2007), the measured tracer’s
mixing ratio [X] is used to quantify the air fraction f
originating from the BL and transported by convection,
using the following equation:

(XTuteony =/ [XIp + (1 = ). [X]yr (D
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Figure 1. IR brightness temperature from MTSAT-2 channel IR108 (10.3—11.3 um) for 0900 UTC on 19 November 2011 (a),

0900 UTC 9 December 2011 (b), 0400UTC || December 2011
are displayed as black lines.

where [X]p; represents the vmr of the tracer in the BL.
For the air masses affected by convection, [X]yreony 15
determined from the calculated means for CH, and CO.
For FI9NOV, [X], is determined from the air directly
probed below the convective system during the take-off
and landing since the convective system was located
near Miri. For FOODEC, the surface air was directly
sampled during a dive under the convective system
down to 1 km altitude and for F11DECa and F11DECDb,
the BL measurements from RV Sonne are used. All
relevant parameters are summarised in Table 1. In all,
18=50% of air present in the outflow of convective
systems was recently transported from the BL, based
on measured CO and CH,.

3.2.3. Impact of deep convection on upper tropospheric
CH;l and CHBr,

For the four studied flights, Figures 2—4 (upper panel)
show GHOST-MS measurements of CHBr; and CH;l
for air affected by deep convection. As for CH, and CO,
flight-dependent enhancements ranging from 0.3 to 0.5
pptv for CH;I and 0.6—1.0 pptv for CHBr; are observed
in the air of convective outflow.

Three areas are defined in order to calculate the
BL mean concentration depending on the location of
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(c) and 0900UTC on || December 2011 (d). The flight tracks

the flight by using a combination of GHOST and RV
Sonne measurements. For FIONOV, [X];; only takes
into account measurements in the region northeast of
Miri, for FOODEC the region on the eastern side of Bor-
neo and for F11DEC the region east of Singapore. Aver-
aging over the designated areas separately removes the
variability in oceanic emission sources between each
region. For CHBrj, it results in averaged concentrations
in the range 1.8-2.7 pptv and for CH4I in the range
0.3-0.5. The UT concentrations are calculated indi-
vidually for each flight and give concentrations in the
range 0.39-0.52 pptv for CHBr; and 0.21-0.25 pptv
for CH;1. According to Sala et al. (2014), the mean con-
centration of CHBr; in the UT is 0.61 +0.2 pptv and
the mean concentration in the BL is 1.43 +0.53 pptv,
considering data from all SHIVA flights in the tropics.
However, the reported mean concentration for UT also
contains the measurements affected by convection. For
F19NOV, FO9DEC and F11DEC, the resulting fractions
f using CHBr; and CH;I are in the range between 15
and 67%. Table 1 summarises measured and averaged
mixing ratios of all gases and fractions f for CHBry
and CH;I. Note, the calculated fractions f depend on
the actual source strength at the marine boundary sur-
face, which for CHBr; are known to strongly vary in
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Figure 2. Measurements from aboard the Falcon-20 during SHIVA campaign during the afternoon flight on 19 November 201 I.
From bottom to top: mini-DOAS webcam picture, CO (in black) and altitude (in red) from SPIRIT instrument and CHBr3 (in
black triangles) and CH3I (in blue lozenge) from GHOST-MS instrument. The times when the aircraft crossed the anvil cloud
were determined according to the mini-DOAS webcam, the humidity data from the Falcon aircraft (showing that when the Falcon
penetrating the clouds the relative humidity exceeded 100% that is indicative of supersaturated air), and the brightness temperature
of the cloud area inferred from the MTSAT (for data lower than 225K, equivalent to |3 km). In panels, these data are labelled in
red. Measurements taken into account to calculate [X]cony are labelled in red and for [X]r in green.
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Figure 3. Same as Figure 2 but for the flight on the afternoon flight on 9 December 201 I. In the bottom panel, the blue line shows
the CH4 measurements of SPIRIT.
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Figure 4. Same as Figures 2 and 3 but for the morning and afternoon flights on 11 December 201 1.

space and time. Furthermore, since the time resolution
of the CHBr; and CH;I measurements is longer than
for CO and CH, measurements, the different averaging
time may also affect the inferred fractions f by proba-
bly biasing them low relative to f calculated from other
trace gases.

3.2.4. Comparison with previous studies

Considering all species from all flights, a mean fraction
of 29 +25% is obtained (mean of the fractions f with
standard deviations ¢ <0.4). Table 1 compares our
inferred fractions f with those found in the literature.
The inferred mean fraction f derived from CO and
CH, (18%—-50%) is in reasonable agreement with the
fraction f inferred by Bertram et al. (2007), Ray et al.
(2004), Lopez et al. (2006) and Bechara et al. (2010)
given the range uncertainties. Like in our study, these
authors used CO and CH, measurements among other
tracers to calculate the fractions f. The fractions of
Cohan et al. (1999) and Barth et al. (2016) using VSLS

© 2018 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd
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CH;1I, CH;0,H, CHBr; and VOCs are in agreement
with our results (15-67%) derived from CHBr; and
CH;1.

Also, from the previous studies related to SHIVA
project, Gromann (2014) inferred a fraction of 19%
for the short-lived species HCHO measured during
F19NOV using a mini-DOAS instrument (Stutz et al.,
2017) and Fuhlbriigge et al. (2016) calculated simi-
lar contributions of marine BL air to the free tropo-
sphere (30-50%) up to 13km height for the whole
SHIVA-campaign with a trajectory model, again in
agreement with the results of the present study.

4. Conclusions

Within the frame of the SHIVA project, air of the
anvil from mesoscale large convective systems was
sampled at altitudes around 11-13km near Borneo
(6.0°N-115.5°E and 5.5°N-118.5°E) and Singapore
(1°N-=106°E) on 19 November, 9 and 11 December

Atmos. Sci. Let. (2018)
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Table 1. SPIRIT measured mean mixing ratios of CO, CH,, CHBr; and CH;l for the boundary layer ([X]g, ), upper troposphere
([X]ut) and convective air masses ([X]yrcony) during the flights on 19 November 2011, 9 December 201 | and || December 201 1.

[X1g [X1ur? [Xlutcon®  fraction f° Comment
This study FI9NOVb  CO* 95+ 12 76 £2 8l +1 026 +0.21 Borneo region
(6°N=117°E)
CHBry¢  1.82+0.86 051 +£004 073012 0.17£0.15
CH, @ 043+0.17 024 £006 035005 059+0.70
FO9DECb  CO¢ 129+9 73+3 83+3 0.18+0.08
CH,© 1801 +25 1771 = 11 1782 + 10 0.37+£0.60
CHBry¢ 232+ 1.66 039 +0.12 069 +003 0.16+0.15
CH, @ 052+054 022 +006 028003 020+043
FIIDECa  CO© 179 8l £3 109 + 15 029+0.16
CH,© 1868 1794 +6 1817+ 13 031020
CHBry¢ 271 +0.89 050 0.1 084 +0.13 0.15+0.10
CH,I¢ 032+0.02 023+004 029 +£007 067+096
FIIDECb  CO*© 179 83 +2 131+ 20 050021
CH,© 1868 1776 +8 1822 + 16 050+0.20
CHBryd 271 +089 051 +0.16 084 +0.12 0.15+0.11
CH,¢ 0324002 021 +£003 027 +006 055+035
Mean 0.29 +0.25¢
Cohan et al. (1999) 0.36-0.68 South Pacific
(60°S—10°N)
Ray et al. (2004) 0.20-0.45 Mexican Gulf (20°N)
Lopez et al. (2006) 0.2-0.4 Subtropical, Florida
Bertram et al. (2007) 0.17+0.08 Eastern United States
and Canada
Bechara et al. (2010) 0.40+0.15 West Africa
GroBmann (2014) 0.19 Borneo region
Derived from Barth et al. (2016) 0.27-0.58 Oklahoma and
northeast
Colorado

These inferred vmr are used in the calculation of the fraction f of air coming from the boundary layer detected in the convective air mass. The mean

fraction f found is compared with other studies.
dUncertainties are | on the mean.

Uncertainties include propagation error of the standard deviation of individual values.

“Volume mixing ratio in ppbv.
9Volume mixing ratio in pptv.
¢Mean of the fraction f with standard deviations ¢ < 0.4.

2011, respectively. Correlated measurements of CO,
CH,, CHBr; and CH;I were interpreted with respect
to the strength of air mass transported from the BL
to the UT by convective systems. The fraction f of
BL air contained in the fresh convective outflow was
calculated to range between 18 and 50% based on
measured CO and CH,. Correlative measurements of
CHBr; and CH;l indicated a fraction between 15 and
67%. The inferred range of f indicates the variability in
mixing due to air mass entrainment into the convective
system, but also points to limitations in the method due
to its dependence on the variability of the tracer’s source
strength and lifetime of the species

To go a step further, modelling or measurements
from higher flying platforms, such as recently per-
formed from the Global Hawk in the NASA ATTREX
project over the Pacific, may provide estimates of
the transport of halogenated VSLS due to deep
convection reaching the TTL (e.g. Werner et al,
2017).
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