184 research outputs found
Matter Wave Scattering and Guiding by Atomic Arrays
We investigate the possibility that linear arrays of atoms can guide matter
waves, much as fiber optics guide light. We model the atomic line as a quasi-1D
array of s wave point scatterers embedded in 2D. Our theoretical study reveals
how matter wave guiding arises from the interplay of scattering phenomena with
bands and conduction along the array. We discuss the conditions under which a
straight or curved array of atoms can guide a beam focused at one end of the
array.Comment: Submitted to Phys. Rev.
Room Temperature Detection of Benzene Vapours by Tin Oxide Nano Clusters
Abstract: Thin films of tin oxide with nano clusters were deposited using Chemical Vapour Transport technique. The annealed films were used as sensor to detect benzene vapours at room temperature. The response was studied for the concentration range 300-1000 ppm. A comparative study of the response of the nano clustered films to benzene vapours in this range with the response of thin films of Indium tin oxide and tin oxide deposited by the physical vapour deposition method was taken up
Isolation and partial purification of erythromycin from alkaliphilic Streptomyces werraensis isolated from Rajkot, India
AbstractAn alkaliphilic actinomycete, BCI-1, was isolated from soil samples collected from Saurashtra University campus, Gujarat. Isolated strain was identified as Streptomyces werraensis based on morphological, biochemical and phylogenetic analysis. Maximum antibiotic production was obtained in media containing sucrose 2%, Yeast extract 1.5%, and NaCl 2.5% at pH 9.0 for 7 days at 30 °C. Maximum inhibitory compound was produced at pH 9 and at 30 °C. FTIR revealed imine, amine, alkane (CC) of aromatic ring and p-di substituted benzene, whereas HPLC analysis of partially purified compound and library search confirmed 95% peaks matches with erythromycin. Chloroform extracted isolated compound showed MIC values 1 μg/ml against Bacillus subtilis, ≤0.5 μg/ml against Staphylococcus aureus, ≤0.5 μg/ml against Escherichia coli and 2.0 μg/ml against Serretia GSD2 sp., which is more effective in comparison to ehtylacetate and methanol extracted compounds. The study holds significance as only few alkaliphilic actinomycetes have been explored for their antimicrobial potential
Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons
We discuss the quantum-circuit realization of the state of a nucleon in the
scope of simple symmetry groups. Explicit algorithms are presented for the
preparation of the state of a neutron or a proton as resulting from the
composition of their quark constituents. We estimate the computational
resources required for such a simulation and design a photonic network for its
implementation. Moreover, we highlight that current work on three-body
interactions in lattices of interacting qubits, combined with the
measurement-based paradigm for quantum information processing, may also be
suitable for the implementation of these nucleonic spin states.Comment: 5 pages, 2 figures, RevTeX4; Accepted for publication in Quantum
Information Processin
Immersed boundary-finite element model of fluid-structure interaction in the aortic root
It has long been recognized that aortic root elasticity helps to ensure
efficient aortic valve closure, but our understanding of the functional
importance of the elasticity and geometry of the aortic root continues to
evolve as increasingly detailed in vivo imaging data become available. Herein,
we describe fluid-structure interaction models of the aortic root, including
the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the
sinotubular junction, that employ a version of Peskin's immersed boundary (IB)
method with a finite element (FE) description of the structural elasticity. We
develop both an idealized model of the root with three-fold symmetry of the
aortic sinuses and valve leaflets, and a more realistic model that accounts for
the differences in the sizes of the left, right, and noncoronary sinuses and
corresponding valve cusps. As in earlier work, we use fiber-based models of the
valve leaflets, but this study extends earlier IB models of the aortic root by
employing incompressible hyperelastic models of the mechanics of the sinuses
and ascending aorta using a constitutive law fit to experimental data from
human aortic root tissue. In vivo pressure loading is accounted for by a
backwards displacement method that determines the unloaded configurations of
the root models. Our models yield realistic cardiac output at physiological
pressures, with low transvalvular pressure differences during forward flow,
minimal regurgitation during valve closure, and realistic pressure loads when
the valve is closed during diastole. Further, results from high-resolution
computations demonstrate that IB models of the aortic valve are able to produce
essentially grid-converged dynamics at practical grid spacings for the
high-Reynolds number flows of the aortic root
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Implications For The Origin Of GRB 051103 From LIGO Observations
We present the results of a LIGO search for gravitational waves (GWs)
associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst
(GRB) whose electromagnetically determined sky position is coincident with the
spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for
short-hard GRBs include compact object mergers and soft gamma repeater (SGR)
giant flares. A merger progenitor would produce a characteristic GW signal that
should be detectable at the distance of M81, while GW emission from an SGR is
not expected to be detectable at that distance. We found no evidence of a GW
signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission
with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81
as the progenitor with a confidence of 98%. Neutron star-black hole mergers are
excluded with > 99% confidence. If the event occurred in M81 our findings
support the the hypothesis that GRB 051103 was due to an SGR giant flare,
making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication,
go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see
the announcement for this paper on ligo.org at:
http://www.ligo.org/science/Publication-GRB051103/index.ph
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
Directional limits on persistent gravitational waves using LIGO S5 science data
The gravitational-wave (GW) sky may include nearby pointlike sources as well
as astrophysical and cosmological stochastic backgrounds. Since the relative
strength and angular distribution of the many possible sources of GWs are not
well constrained, searches for GW signals must be performed in a
model-independent way. To that end we perform two directional searches for
persistent GWs using data from the LIGO S5 science run: one optimized for
pointlike sources and one for arbitrary extended sources. The latter result is
the first of its kind. Finding no evidence to support the detection of GWs, we
present 90% confidence level (CL) upper-limit maps of GW strain power with
typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2
Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on
pointlike sources constitute a factor of 30 improvement over the previous best
limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain
from interesting targets including Sco X-1, SN1987A and the Galactic Center as
low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These
limits are the most constraining to date and constitute a factor of 5
improvement over the previous best limits.Comment: 10 pages, 4 figure
- …