46 research outputs found

    Developmental Tuning of Epigenetic Clock

    Get PDF
    Research in the field of gerontology has traditionally focused on later life stages. There is increasing evidence, however, that both the rate of age-related functional decline and the later-life health status can be programmed during early development. The central role of epigenetic mechanisms (methylation of DNA, histone modifications and regulation by non-coding RNAs) in mediating these long-term effects has been elucidated. Both rate and direction of age-associated change of epigenetic patterns (“epigenetic drift”) were shown to be largely dependent on early-life environmental conditions. Inter-individual divergences in epigenetic profiles may arise following the stochastic errors in maintaining epigenetic marks, but they may also be adaptively mediated by specific environmental cues. Recent cohort studies indicate that ticking rate of epigenetic clock, estimated by a DNA methylation-based methods, may be developmentally adjusted, and that individual’s discrepancies among epigenetic and chronological age would be likely programmed early in development. In this Perspective article, recent findings suggesting the importance of early-life determinants for life-course dynamics of epigenetic drift are summarized and discussed

    COMMENTARY: ETHICAL ISSUES OF CURRENT HEALTH-PROTECTION POLICIES ON LOW-DOSE IONIZING RADIATION

    Get PDF
    The linear no-threshold (LNT) model of ionizing-radiation-induced cancer is based on the assumption that every radiation dose increment constitutes increased cancer risk for humans. The risk is hypothesized to increase linearly as the total dose increases. While this model is the basis for radiation safety regulations, its scientific validity has been questioned and debated for many decades. The recent memorandum of the International Commission on Radiological Protection admits that the LNT-model predictions at low doses are “speculative, unproven, undetectable and ‘phantom’.” Moreover, numerous experimental, ecological, and epidemiological studies show that low doses of sparsely-ionizing or sparsely-ionizing plus highly-ionizing radiation may be beneficial to human health (hormesis/adaptive response). The present LNT-model-based regulations impose excessive costs on the society. For example, the median-cost medical program is 5000 times more cost-efficient in saving lives than controlling radiation emissions. There are also lives lost: e.g., following Fukushima accident, more than 1000 disaster-related yet non-radiogenic premature deaths were officially registered among the population evacuated due to radiation concerns. Additional negative impacts of LNT-model-inspired radiophobia include: refusal of some patients to undergo potentially life-saving medical imaging; discouragement of the study of low-dose radiation therapies; motivation for radiological terrorism and promotion of nuclear proliferation

    Longevity and stress resistance are affected by activation of TOR/Myc in progenitor cells of Drosophila gut

    Get PDF
    Diverse physiological pathways have been shown to regulate longevity, stress resistance, fecundity and feeding rates, and metabolism in Drosophila. Here we tesed physiological traits in flies with Rheb and Myc- Rheb overexpressed in gut progenitor cells, known as enteroblasts (EBs). We found that activation of TOR signaling by overexpression of Rheb in EBs decreases survival and stress resistance. Additionall, we showed that Myc co-expression in EBs reduces fly fecundity and feeding rate. Rheb overexpression enhanced the level of whole body glucose. Higher relative expression of the metabolic genes dilps, akh, tobi and pepck was, however, observed. The role of TOR/Myc in the regulation of genes involved in lipid metabolism and protein synthesis was established. We showed a significant role of TOR/Myc in EBs in the regulation of the JAK/STAT, EGFR and insulin signaling pathways in Drosophila gut. These results highlight the importance of the balance between all different types of cells and confirm previous studies demonstrating that promotion of homeostasis in the intestine of Drosophila may function as a mechanism for the extension of organismal lifespan. Overall, the results demonstrate a role of TOR signaling and its downstream target Myc in EB cells in the regulation of Drosophila physiological processes

    Insulin-Like Peptides Regulate Feeding Preference and Metabolism in Drosophila

    Get PDF
    Fruit flies have eight identified Drosophila insulin-like peptides (DILPs) that are involved in the regulation of carbohydrate concentrations in hemolymph as well as in accumulation of storage metabolites. In the present study, we investigated diet-dependent roles of DILPs encoded by the genes dilp1–5, and dilp7 in the regulation of insect appetite, food choice, accumulation of triglycerides, glycogen, glucose, and trehalose in fruit fly bodies and carbohydrates in hemolymph. We have found that the wild type and the mutant lines demonstrate compensatory feeding for carbohydrates. However, mutants on dilp2,3, dilp3, dilp5, and dilp7 showed higher consumption of proteins on high yeast diets. To evaluate metabolic differences between studied lines on different diets we applied response surface methodology. High nutrient diets led to a moderate increase in concentration of glucose in hemolymph of the wild type flies. Mutations on dilp genes changed this pattern. We have revealed that the dilp2 mutation led to a drop in glycogen levels independently on diet, lack of dilp3 led to dramatic increase in circulating trehalose and glycogen levels, especially at low protein consumption. Lack of dilp5 led to decreased levels of glycogen and triglycerides on all diets, whereas knockout on dilp7 caused increase in glycogen levels and simultaneous decrease in triglyceride levels at low protein consumption. Fruit fly appetite was influenced by dilp3 and dilp7 genes. Our data contribute to the understanding of Drosophila as a model for further studies of metabolic diseases and may serve as a guide for uncovering the evolution of metabolic regulatory pathways

    Additional Impact of Glucose Tolerance on Telomere Length in Persons With and Without Metabolic Syndrome in the Elderly Ukraine Population

    Get PDF
    Rationale: Association between different components of metabolic syndrome and the rate of age-related telomere shortening was reported repeatedly, although some findings are inconsistent across studies, suggesting the need for further research on the topic. In the present study, we examined relationships between different components of metabolic syndrome (MetS); glucose tolerance reflected in 2-h post-load plasma glucose (2hPG) levels and age on the leukocyte telomere length (LTL) in Ukraine population.Methods: The study was conducted on the 115 adult individuals residing in the Kyiv region (Ukraine). Among them, 79 were diagnosed with MetS according to the International Diabetes Federation definition. LTL were determined by a qPCR-based method. Multivariate logistic regression (MLR) and artificial neural networks (ANN) modeling were used for the analysis of the results. ROC-analysis was also performed to compare the predictively values of this models.Results: MetS was associated with a high (OR = 3.0 CI 1.3–6.7; p = 0.01) risk of having shorter telomeres that remained significant after adjusting for age, gender and 2hPG levels. Fasting plasma glucose (FPG) levels and other MetS components did not affect the magnitude of the relationship and did not reveal the independent influence of these factors. The level of 2hPG in turn, demonstrated a significant relationship (OR = 1.3 CI 1.0–1.6 per 1 mmol/l; p = 0.04) with LTL regardless of the presence of MetS. The non-linearity of the interactions between age, gender and 2hPG level was revealed by neural network modeling (AUC = 0.76 CI 0.68–0.84).Conclusion: Our study found that impaired glucose tolerance, but not FPG levels, affected the association between LTL and MetS, which may be also indicative for pathophysiological differences in these hyperglycemia categories. 2hPG levels can provide an opportunity for a more accurate diagnostics of MetS and for evaluating the rate of aging in patients with MetS. Further research, however, is needed to verify this assumption

    Early-Life Nutritional Programming of Type 2 Diabetes: Experimental and Quasi-Experimental Evidence

    No full text
    Consistent evidence from both experimental and human studies suggest that inadequate nutrition in early life can contribute to risk of developing metabolic disorders including type 2 diabetes (T2D) in adult life. In human populations, most findings supporting a causative relationship between early-life malnutrition and subsequent risk of T2D were obtained from quasi-experimental studies (‘natural experiments’). Prenatal and/or early postnatal exposures to famine were demonstrated to be associated with higher risk of T2D in many cohorts around the world. Recent studies have highlighted the importance of epigenetic regulation of gene expression as a possible major contributor to the link between the early-life famine exposure and T2D in adulthood. Findings from these studies suggest that prenatal exposure to the famine may result in induction of persistent epigenetic changes that have adaptive significance in postnatal development but can predispose to metabolic disorders including T2D at the late stages of life. In this review, quasi-experimental data on the developmental programming of T2D are summarized and recent research findings on changes in DNA methylation that mediate these effects are discussed

    Biological age and life duration of the different lines drosophila melanogaster with the experimental modifications of ageing tempo

    No full text
    The laboratory populations of fruit flies have been examined. The work is aimed at studying the different genetic, medium and medicamentous effects on some indicators of the survivability and dynamics of the fruit fly age mortality on the base of the multidimensional statistics. It has been established that between-line differences of the imago survivability increases with the age, that the heterosis on the life duration appears on the late stages of the fruit fly life, that the influence of the heroprotectors on the survivability is the most significant on the later stages of the ontogenesis. The methods of the factor analysis has been approved and the expediency of its usage has been shown when studying the survivability with the natural course of ageing and its experimental modifications. The battery of tests has been developed for the determination of the biological age of the fruit flyAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Implementation of longevity-promoting supplements and medications in public health practice: achievements, challenges and future perspectives

    No full text
    Abstract Background Most modern societies undergo rapid population aging. The rise in life expectancy, nevertheless, is not accompanied, to date, by the same increment of healthspan. Efforts to increase healthspan by means of supplements and pharmaceuticals targeting aging-related pathologies are presently in spotlight of a new branch in geriatric medicine, geroscience, postulating that aging could be manipulated in such a way that will in parallel allow delay the onset of all age-associated chronic disorders. Discussion Currently, the concept of the “longevity dividend” has been developed pointed out that the extension of healthspan by slowing the rate of aging is the most efficient way to combat various aging-related chronic illnesses and disabling conditions than combating them one by one, what is the present-day approach in a generally accepted disease-based paradigm. The further elaboration of pharmaceuticals specifically targeted at age-associated disorders (commonly referred to as ‘anti-aging drugs’) is currently one of the most extensively developed fields in modern biogerontology. Some classes of chemically synthesized compounds and nutraceuticals such as calorie restriction mimetics, autophagy inductors, senolytics and others have been identified as having potential for anti-aging intervention through their possible effects on basic processes underlying aging. In modern pharmaceutical industry, development of new classes of anti-aging medicines is apparently one of the most hopeful directions since potential target group may include each adult individual. Summary Implementation of the geroscience-based approaches into healthcare policy and practice would increase the ratio of healthy to unhealthy population due to delaying the onset of age-associated chronic pathologies. That might result in decreasing the biological age and increasing the age of disability, thus increasing the age of retirement and enhancing income without raising taxes. Economic, social and ethical aspects of applying the healthspan- and lifespan-promoting interventions, however, have to be comprehensively debated prior to their implementation in public health practice
    corecore