25 research outputs found
Astrokit -- an Efficient Program for High-Precision Differential CCD Photometry and Search for Variable Stars
Having a need to perform differential photometry for tens of thousands stars
in a several square degrees field, we developed Astrokit program. The software
corrects the star brightness variations caused by variations of atmospheric
transparency: to this end, the program selects for each star an individual
ensemble of reference stars having similar magnitudes and positions in the
frame. With ten or more reference stars in the ensemble, the differences
between their spectral types and the spectral type of the object studied become
unimportant. Astrokit searches for variable stars using Robust Median
Statistics criterion, which allows candidate variables to be selected more
efficiently than by analyzing the standard deviation of star magnitudes. The
software allows very precise automatic analysis of long inhomogeneous sets of
photometric observations of a large number of objects to be performed, making
it possible to find "hot Jupiter" type exoplanet transits and low-amplitude
variables. We describe the algorithm of the program and the results of its
application to reduce the data of the photometric sky survey in Cygnus as well
as observations of the open cluster NGC188 and the transit of the exoplanet
WASP-11 b / HAT-P-10 b, performed with the MASTER-II-URAL telescope of the
Kourovka Astronomical Observatory of the Ural Federal University.Comment: to be published in Astrophysical Bulletin, Vol. 69, No.
Trajectory Retrieval and Component Investigations of Southern Polar Stratosphere Based on High Resolution Spectroscopy of Totally Eclipsed Moon Surface
Abstract. In this paper we present the high resolution spectral observations of the fragment of lunar surface during the total lunar eclipse of December 10, 2011. The observations were carried out with the fiber-fed echelle spectrograph at 1.2-m telescope in Kourovka Astronomical observatory (Ural mountains, central Russia). The observed radiation is transferred by tangent trajectory through the southern polar stratosphere before the reflection from the Moon and spectra contain a number of absorption bands of atmospheric gases (O 2 , O 3 , O 4 , NO 2 , H 2 O). High resolution analysis of three O 2 bands and O 4 absorption effects is used to trace the effective trajectory of solar emission through the stratosphere and to detect the contribution of scattered light. Bands of other gases allow us to measure their abundances along the trajectory
Supernova search with active learning in ZTF DR3
We provide the first results from the complete SNAD adaptive learning
pipeline in the context of a broad scope of data from large-scale astronomical
surveys. The main goal of this work is to explore the potential of adaptive
learning techniques in application to big data sets. Our SNAD team used Active
Anomaly Discovery (AAD) as a tool to search for new supernova (SN) candidates
in the photometric data from the first 9.4 months of the Zwicky Transient
Facility (ZTF) survey, namely, between March 17 and December 31 2018 (58194 <
MJD < 58483). We analysed 70 ZTF fields at a high galactic latitude and
visually inspected 2100 outliers. This resulted in 104 SN-like objects being
found, 57 of which were reported to the Transient Name Server for the first
time and with 47 having previously been mentioned in other catalogues, either
as SNe with known types or as SN candidates. We visually inspected the
multi-colour light curves of the non-catalogued transients and performed
fittings with different supernova models to assign it to a probable photometric
class: Ia, Ib/c, IIP, IIL, or IIn. Moreover, we also identified unreported
slow-evolving transients that are good superluminous SN candidates, along with
a few other non-catalogued objects, such as red dwarf flares and active
galactic nuclei. Beyond confirming the effectiveness of human-machine
integration underlying the AAD strategy, our results shed light on potential
leaks in currently available pipelines. These findings can help avoid similar
losses in future large-scale astronomical surveys. Furthermore, the algorithm
enables direct searches of any type of data and based on any definition of an
anomaly set by the expert.Comment: 22 pages with appendix, 12 figures, 2 tables, accepted for
publication in Astronomy and Astrophysic
First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields
We present the first results of our search for transiting exoplanet
candidates as part of the Kourovka Planet Search (KPS) project. The primary
objective of the project is to search for new hot Jupiters which transit their
host stars, mainly in the Galactic plane, in the magnitude range of 11 to
14 mag. Our observations were performed with the telescope of the MASTER
robotic network, installed at the Kourovka astronomical observatory of the Ural
Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph,
installed at the private Acton Sky Portal Observatory (USA). As test
observations, we observed three celestial fields of size deg
during the period from 2012 to 2015. As a result, we discovered four transiting
exoplanet candidates among the 39000 stars of the input catalogue. In this
paper, we provide the description of the project and analyse additional
photometric, spectral, and speckle interferometric observations of the
discovered transiting exoplanet candidates. Three of the four transiting
exoplanet candidates are most likely astrophysical false positives, while the
nature of the fourth (most promising) candidate remains to be ascertained.
Also, we propose an alternative observing strategy that could increase the
project's exoplanet haul.Comment: 11 pages, 16 figures; Accepted for publication in Monthly Notices of
the Royal Astronomical Society 201
Trajectory Retrieval and Component Investigations of Southern Polar Stratosphere Based on High Resolution Spectroscopy of Totally Eclipsed Moon Surface
In this paper we present the high resolution spectral observations of the
fragment of lunar surface during the total lunar eclipse of December 10, 2011.
The observations were carried out with the fiber-fed echelle spectrograph at
1.2-m telescope in Kourovka Astronomical observatory (Ural mountains, central
Russia). The observed radiation is transferred by tangent trajectory through
the southern polar stratosphere before the reflection from the Moon and spectra
contain a number of absorption bands of atmospheric gases (O2, O3, O4, NO2,
H2O). High resolution analysis of three O2 bands and O4 absorption effects is
used to trace the effective trajectory of solar emission through the
stratosphere and to detect the contribution of scattered light. Bands of other
gases allow us to measure their abundances along the trajectory.Comment: 13 pages, 9 figure
KPS-1b: The First Transiting Exoplanet Discovered Using an Amateur Astronomer's Wide-field CCD Data
We report the discovery of the transiting hot Jupiter KPS-1b. This exoplanet orbits a V = 13.0 K1-type main sequence star every 1.7 days, has a mass of 1.090 (+0.086 -0.087) MJup and a radius of 1.03 (+0.13 -0.12) RJup. The discovery was made by the prototype Kourovka Planet Search (KPS) project, which used wide-field CCD data gathered by an amateur astronomer using readily available and relatively affordable equipment. Here we describe the equipment and observing technique used for the discovery of KPS-1b, its characterization with spectroscopic observations by the SOPHIE spectrograph and with high-precision photometry obtained with 1m class telescopes. We also outline the KPS project evolution into the Galactic Plane eXoplanet survey. The discovery of KPS-1b represents a new major step of the contribution of amateur astronomers to the burgeoning field of exoplanetology
TOI-1259Ab – a gas giant planet with 2.7 per cent deep transits and a bound white dwarf companion
We present TOI-1259Ab, a 1.0RJup gas giant planet transiting a 0.71R⊙ K-dwarf on a 3.48 d orbit. The system also contains a bound white dwarf companion TOI-1259B with a projected distance of ∼1600 au from the planet host. Transits are observed in nine TESS sectors and are 2.7 per cent deep – among the deepest known – making TOI-1259Ab a promising target for atmospheric characterization. Our follow-up radial velocity measurements indicate a variability of semiamplitude , implying a planet mass of 0.44MJup. By fitting the spectral energy distribution of the white dwarf, we derive a total age of Gyr for the system. The K dwarf’s light curve reveals rotational variability with a period of 28 d, which implies a gyrochronology age broadly consistent with the white dwarf’s total age
Another Shipment of Six Short-Period Giant Planets from TESS
We present the discovery and characterization of six short-period, transiting
giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) --
TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642),
TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467).
All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a
combination of time-series photometric and spectroscopic follow-up observations
from the TESS Follow-up Observing Program (TFOP) Working Group, we have
determined that the planets are Jovian-sized (R = 1.00-1.45 R),
have masses ranging from 0.92 to 5.35 M, and orbit F, G, and K stars
(4753 T 7360 K). We detect a significant orbital eccentricity
for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days,
= ), TOI-2145 b (P = 10.261 days, =
), and TOI-2497 b (P = 10.656 days, =
). TOI-2145 b and TOI-2497 b both orbit subgiant host
stars (3.8 g 4.0), but these planets show no sign of inflation
despite very high levels of irradiation. The lack of inflation may be explained
by the high mass of the planets; M (TOI-2145
b) and M (TOI-2497 b). These six new discoveries
contribute to the larger community effort to use {\it TESS} to create a
magnitude-complete, self-consistent sample of giant planets with
well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA
Identification of the top TESS objects of interest for atmospheric characterization of transiting exoplanets with JWST
Funding: Funding for the TESS mission is provided by NASA's Science Mission Directorate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This paper is based on observations made with the MuSCAT3 instrument, developed by the Astrobiology Center and under financial support by JSPS KAKENHI (grant No. JP18H05439) and JST PRESTO (grant No. JPMJPR1775), at Faulkes Telescope North on Maui, HI, operated by the Las Cumbres Observatory. This paper makes use of data from the MEarth Project, which is a collaboration between Harvard University and the Smithsonian Astrophysical Observatory. The MEarth Project acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grant Nos. AST-0807690, AST-1109468, AST-1616624 and AST-1004488 (Alan T. Waterman Award), the National Aeronautics and Space Administration under grant No. 80NSSC18K0476 issued through the XRP Program, and the John Templeton Foundation. C.M. would like to gratefully acknowledge the entire Dragonfly Telephoto Array team, and Bob Abraham in particular, for allowing their telescope bright time to be put to use observing exoplanets. B.J.H. acknowledges support from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program (grant No. 80NSSC20K1551) and support by NASA under grant No. 80GSFC21M0002. K.A.C. and C.N.W. acknowledge support from the TESS mission via subaward s3449 from MIT. D.R.C. and C.A.C. acknowledge support from NASA through the XRP grant No. 18-2XRP18_2-0007. C.A.C. acknowledges that this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). S.Z. and A.B. acknowledge support from the Israel Ministry of Science and Technology (grant No. 3-18143). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant No. PDR T.0120.21. The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant No. T.0109.20 and by the Francqui Foundation. H.P.O.'s contribution has been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation under grant Nos. 51NF40_182901 and 51NF40_205606. F.J.P. acknowledges financial support from the grant No. CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033. A.J. acknowledges support from ANID—Millennium Science Initiative—ICN12_009 and from FONDECYT project 1210718. Z.L.D. acknowledges the MIT Presidential Fellowship and that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1745302. P.R. acknowledges support from the National Science Foundation grant No. 1952545. This work is partly supported by JSPS KAKENHI grant Nos. JP17H04574, JP18H05439, JP21K20376; JST CREST grant No. JPMJCR1761; and Astrobiology Center SATELLITE Research project AB022006. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. D.D. acknowledges support from TESS Guest Investigator Program grant Nos. 80NSSC22K1353, 80NSSC22K0185, and 80NSSC23K0769. A.B. acknowledges the support of M.V. Lomonosov Moscow State University Program of Development. T.D. was supported in part by the McDonnell Center for the Space Sciences. V.K. acknowledges support from the youth scientific laboratory project, topic FEUZ-2020-0038.JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature Teq and planetary radius Rp and are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.Peer reviewe