123 research outputs found
Seismogenic zone structure of the southern Middle America Trench, Costa Rica
The shallow seismogenic portion of subduction zones generates damaging large and great earthquakes. This study provides structural constraints on the seismogenic zone of the Middle America Trench offshore central Costa Rica and insights into the physical and mechanical characteristics controlling seismogenesis. We have located ~300 events that occurred following the MW 6.9, 20 August 1999, Quepos, Costa Rica, underthrusting earthquake using a three-dimensional velocity model and arrival time data recorded by a temporary local network of land and ocean bottom seismometers. We use aftershock locations to define the geometry and characteristics of the seismogenic zone in this region.
These events define a plane dipping at 19° that marks the interface between the Cocos Plate and the Panama Block. The majority of aftershocks occur below 10 km and above 30 km depth below sea level, corresponding to 30–35 km and 95 km from the trench axis, respectively. Relative event relocation produces a seismicity pattern similar to that obtained using absolute locations, increasing confidence in the geometry of the seismogenic zone. The aftershock locations spatially correlate with the downdip extension of the oceanic Quepos Plateau and reflect the structure of the main shock rupture asperity.
This strengthens an earlier argument that the 1999 Quepos earthquake ruptured specific bathymetric highs on the downgoing plate. We believe that subduction of this highly disrupted seafloor has established a set of conditions which presently limit the seismogenic zone to be between 10 and 35 km below sea level
Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins
The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where ‘n’ can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5′ of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding sites are abundantly distributed throughout the B. burgdorferi genome, occurring approximately once every 1 kb. These and other features of EbfC suggest that this small protein and its orthologs may represent a distinctive type of bacterial nucleoid-associated protein. EbfC was shown to bind DNA as a homodimer, and site-directed mutagenesis studies indicated that EbfC and its orthologs appear to bind DNA via a novel α-helical ‘tweezer’-like structure
Mycobacterium tuberculosis bloodstream infection prevalence, diagnosis, and mortality risk in seriously ill adults with HIV: a systematic review and meta-analysis of individual patient data.
BACKGROUND: The clinical and epidemiological significance of HIV-associated Mycobacterium tuberculosis bloodstream infection (BSI) is incompletely understood. We hypothesised that M tuberculosis BSI prevalence has been underestimated, that it independently predicts death, and that sputum Xpert MTB/RIF has suboptimal diagnostic yield for M tuberculosis BSI. METHODS: We did a systematic review and individual patient data (IPD) meta-analysis of studies performing routine mycobacterial blood culture in a prospectively defined patient population of people with HIV aged 13 years or older. Studies were identified through searching PubMed and Scopus up to Nov 10, 2018, without language or date restrictions and through manual review of reference lists. Risk of bias in the included studies was assessed with an adapted QUADAS-2 framework. IPD were requested for all identified studies and subject to harmonised inclusion criteria: age 13 years or older, HIV positivity, available CD4 cell count, a valid mycobacterial blood culture result (excluding patients with missing data from lost or contaminated blood cultures), and meeting WHO definitions for suspected tuberculosis (presence of screening symptom). Predicted probabilities of M tuberculosis BSI from mixed-effects modelling were used to estimate prevalence. Estimates of diagnostic yield of sputum testing with Xpert (or culture if Xpert was unavailable) and of urine lipoarabinomannan (LAM) testing for M tuberculosis BSI were obtained by two-level random-effect meta-analysis. Estimates of mortality associated with M tuberculosis BSI were obtained by mixed-effect Cox proportional-hazard modelling and of effect of treatment delay on mortality by propensity-score analysis. This study is registered with PROSPERO, number 42016050022. FINDINGS: We identified 23 datasets for inclusion (20 published and three unpublished at time of search) and obtained IPD from 20, representing 96·2% of eligible IPD. Risk of bias for the included studies was assessed to be generally low except for on the patient selection domain, which was moderate in most studies. 5751 patients met harmonised IPD-level inclusion criteria. Technical factors such as number of blood cultures done, timing of blood cultures relative to blood sampling, and patient factors such as inpatient setting and CD4 cell count, explained significant heterogeneity between primary studies. The predicted probability of M tuberculosis BSI in hospital inpatients with HIV-associated tuberculosis, WHO danger signs, and a CD4 count of 76 cells per μL (the median for the cohort) was 45% (95% CI 38-52). The diagnostic yield of sputum in patients with M tuberculosis BSI was 77% (95% CI 63-87), increasing to 89% (80-94) when combined with urine LAM testing. Presence of M tuberculosis BSI compared with its absence in patients with HIV-associated tuberculosis increased risk of death before 30 days (adjusted hazard ratio 2·48, 95% CI 2·05-3·08) but not after 30 days (1·25, 0·84-2·49). In a propensity-score matched cohort of participants with HIV-associated tuberculosis (n=630), mortality increased in patients with M tuberculosis BSI who had a delay in anti-tuberculosis treatment of longer than 4 days compared with those who had no delay (odds ratio 3·15, 95% CI 1·16-8·84). INTERPRETATION: In critically ill adults with HIV-tuberculosis, M tuberculosis BSI is a frequent manifestation of tuberculosis and predicts mortality within 30 days. Improved diagnostic yield in patients with M tuberculosis BSI could be achieved through combined use of sputum Xpert and urine LAM. Anti-tuberculosis treatment delay might increase the risk of mortality in these patients. FUNDING: This study was supported by Wellcome fellowships 109105Z/15/A and 105165/Z/14/A
DNA Topoisomerase II Modulates Insulator Function in Drosophila
Insulators are DNA sequences thought to be important for the establishment and maintenance of cell-type specific nuclear architecture. In Drosophila there are several classes of insulators that appear to have unique roles in gene expression. The mechanisms involved in determining and regulating the specific roles of these insulator classes are not understood. Here we report that DNA Topoisomerase II modulates the activity of the Su(Hw) insulator. Downregulation of Topo II by RNAi or mutations in the Top2 gene result in disruption of Su(Hw) insulator function. This effect is mediated by the Mod(mdg4)2.2 protein, which is a unique component of the Su(Hw) insulator complex. Co-immunoprecipitation and yeast two-hybrid experiments show that Topo II and Mod(mdg4)2.2 proteins directly interact. In addition, mutations in Top2 cause a slight decrease of Mod(mdg4)2.2 transcript but have a dramatic effect on Mod(mdg4)2.2 protein levels. In the presence of proteasome inhibitors, normal levels of Mod(mdg4)2.2 protein and its binding to polytene chromosomes are restored. Thus, Topo II is required to prevent Mod(mdg4)2.2 degradation and, consequently, to stabilize Su(Hw) insulator-mediated chromatin organization
High-Resolution Melting Analysis for the Rapid Detection of Fluoroquinolone and Streptomycin Resistance in Mycobacterium tuberculosis
published_or_final_versio
What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology
Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology
Recommended from our members
Energetic particle influence on the Earth's atmosphere
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally
galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere
are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
- …