35 research outputs found

    Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests

    Get PDF
    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments

    Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?

    Get PDF
    Amazon forests are fire-sensitive ecosystems and consequently fires affect forest structure and composition. For instance, the legacy of past fire regimes may persist through some species and traits that are found due to past fires. In this study, we tested for relationships between functional traits that are classically presented as the main components of plant ecological strategies and environmental filters related to climate and historical fires among permanent mature forest plots across the range of local and regional environmental gradients that occur in Amazonia. We used percentage surface soil pyrogenic carbon (PyC), a recalcitrant form of carbon that can persist for millennia in soils, as a novel indicator of historical fire in old-growth forests. Five out of the nine functional traits evaluated across all 378 species were correlated with some environmental variables. Although there is more PyC in Amazonian soils than previously reported, the percentage soil PyC indicated no detectable legacy effect of past fires on contemporary functional composition. More species with dry diaspores were found in drier and hotter environments. We also found higher wood density in trees from higher temperature sites. If Amazon forest past burnings were local and without distinguishable attributes of a widespread fire regime, then impacts on biodiversity would have been small and heterogeneous. Alternatively, sufficient time may have passed since the last fire to allow for species replacement. Regardless, as we failed to detect any impact of past fire on present forest functional composition, if our plots are representative then it suggests that mature Amazon forests lack a compositional legacy of past fire

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Galling insects (Diptera : Cecidomyiidae) survive inundation during host plant flooding in Central Amazonia

    No full text
    The effect of host plant inundation on survivorship of Symmeria paniculata's galling herbivores was investigated in Central Amazonian floodplain forest. The majority of submerged galls were alive (62% of morphospecies 1 and 70% of morphospecies 2). Survivorship was similar between submerged leaves and new leaves that were never submerged. Some submerged galls were eaten by fish. To the best of our knowledge, this is the first report of galling insect survivorship under severe flooding.35111511

    Technical Orientation of Silviculture in the Tropics

    No full text
    corecore