2,552 research outputs found

    Geometric discord and Measurement-induced nonlocality for well known bound entangled states

    Full text link
    We employ geometric discord and measurement induced nonlocality to quantify non classical correlations of some well-known bipartite bound entangled states, namely the two families of Horodecki's (2⊗42\otimes 4, 3⊗33\otimes 3 and 4⊗44\otimes 4 dimensional) bound entangled states and that of Bennett etal's in 3⊗33\otimes 3 dimension. In most of the cases our results are analytic and both the measures attain relatively small value. The amount of quantumness in the 4⊗44\otimes 4 bound entangled state of Benatti etal and the 2⊗82\otimes 8 state having the same matrix representation (in computational basis) is same. Coincidently, the 2m⊗2m2m\otimes 2m Werner and isotropic states also exhibit the same property, when seen as 2⊗2m22\otimes 2m^2 dimensional states.Comment: V2: Title changed, one more state added; 11 pages (single column), 2 figures, accepted in Quantum Information Processin

    Coulomb Interactions between Cytoplasmic Electric Fields and Phosphorylated Messenger Proteins Optimize Information Flow in Cells

    Get PDF
    Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM) to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM). While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length.Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions.This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger proteins and intracellular electric fields will optimize information transfer from the CM to the NM in cells

    Colliding AdS gravitational shock waves in various dimensions and holography

    Full text link
    The formation of marginally trapped surfaces in the off-center collision of two shock waves on AdS_D (with D=4,5,6,7 and 8) is studied numerically. We focus on the case when the two waves collide with nonvanishing impact parameter while the sources are located at the same value of the holographic coordinate. In all cases a critical value of the impact parameter is found above which no trapped surface is formed. The numerical results show the existence of a simple scaling relation between the critical impact parameter and the energy of the colliding waves. Using the isometries of AdS_D we relate the solutions obtained to the ones describing the collision of two waves with a purely holographic impact parameter. This provides a gravitational dual for the head-on collision of two lumps of energy of unequal size.Comment: 25 pages, 11 figures. v2: minor changes, typos corrected. To appear in JHE

    Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions

    Get PDF
    The phase diagram of quark gluon plasma (QGP) formed at a very early stage just after the heavy ion collision is obtained by using a holographic dual model for the heavy ion collision. In this dual model colliding ions are described by the charged shock gravitational waves. Points on the phase diagram correspond to the QGP or hadronic matter with given temperatures and chemical potentials. The phase of QGP in dual terms is related to the case when the collision of shock waves leads to formation of trapped surface. Hadronic matter and other confined states correspond to the absence of trapped surface after collision. Multiplicity of the ion collision process is estimated in the dual language as area of the trapped surface. We show that a non-zero chemical potential reduces the multiplicity. To plot the phase diagram we use two different dual models of colliding ions, the point and the wall shock waves, and find qualitative agreement of the results.Comment: 33 pages, 14 figures, typos correcte

    Towards Visual Feedback Loops for Robot-Controlled Additive Manufacturing

    Full text link
    Robotic additive manufacturing methods have enabled the design and fabrication of novel forms and material systems that represent an important step forward for architectural fabrication. However, a common problem in additive manufacturing is to predict and incorporate the dynamic behavior of the material that is the result of the complex confluence of forces and material properties that occur during fabrication. While there have been some approaches towards verification systems, to date most robotic additive manufacturing processes lack verification to ensure deposition accuracy. Inaccuracies, or in some instances critical errors, can occur due to robot dynamics, material self-deflection, material coiling, or timing shifts in the case of multi-material prints. This paper addresses that gap by presenting an approach that uses vision-based sensing systems to assist robotic additive manufacturing processes. Using online image analysis techniques, occupancy maps can be created and updated during the fabrication process to document the actual position of the previously deposited material. This development is an intermediary step towards closed-loop robotic control systems that combine workspace sensing capabilities with decision-making algorithms to adjust toolpaths to correct for errors or inaccuracies if necessary. The occupancy grid map provides a complete representation of the print that can be analyzed to determine various key aspects, such as, print quality, extrusion diameter, adhesion between printed parts, and intersections within the meshes. This valuable quantitative information regarding system robustness can be used to influence the system’s future actions. This approach will help ensure consistent print quality and sound tectonics in robotic additive manufacturing processes, improving on current techniques and extending the possibilities of robotic fabrication in architecture

    Eleven-month longitudinal study of antibodies in SARS-CoV-2 exposed and naĂŻve primary health care workers upon COVID-19 vaccination

    Full text link
    We evaluated the kinetics of antibody responses to Two years into the COVID-19 pandemic and 1 year after the start of vaccination rollout, the world faced a peak of cases associated with the highly contagious Omicron variant of concern (VoC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) and nucleocapsid (N) antigens over five cross-sectional visits (January-November 2021), and the determinants of pre-booster immunoglobulin levels, in a prospective cohort of vaccinated primary health care workers in Catalonia, Spain. Antibodies against S antigens after a full primary vaccination course, mostly with BNT162b2, decreased steadily over time and were higher in pre-exposed (n = 247) than naive (n = 200) individuals, but seropositivity was maintained at 100% (100% IgG, 95.5% IgA, 30.6% IgM) up to 319 days after the first dose. Antibody binding to variants of concern was highly maintained for IgG compared to wild type but significantly reduced for IgA and IgM, particularly for Beta and Gamma. Factors significantly associated with longer-term antibodies included age, sex, occupation, smoking, adverse reaction to vaccination, levels of pre-vaccination SARS-CoV-2 antibodies, interval between disease onset and vaccination, hospitalization, oxygen supply, post COVID and symptomatology. Earlier morning vaccination hours were associated with higher IgG responses in pre-exposed participants. Symptomatic breakthroughs occurred in 9/447 (2.01%) individuals, all among naive (9/200, 4.5%) and generally boosted antibody responses. Additionally, an increase in IgA and/or IgM seropositivity to variants, and N seroconversion at later time points (6.54%), indicated asymptomatic breakthrough infections, even among pre-exposed. Seropositivity remained highly stable over almost a year after vaccination. However, gradually waning of anti-S IgGs that correlate with neutralizing activity, coupled to evidence of an increase in breakthrough infections during the Delta and Omicron predominance, provides a rationale for booster immunization

    The Hong-Ou-Mandel effect with atoms

    Full text link
    Controlling light at the level of individual photons has led to advances in fields ranging from quantum information and precision sensing to fundamental tests of quantum mechanics. A central development that followed the advent of single photon sources was the observation of the Hong-Ou- Mandel (HOM) effect, a novel two-photon path interference phenomenon experienced by indistinguishable photons. The effect is now a central technique in the field of quantum optics, harnessed for a variety of applications such as diagnosing single photon sources and creating probabilistic entanglement in linear quantum computing. Recently, several distinct experiments using atomic sources have realized the requisite control to observe and exploit Hong-Ou-Mandel interference of atoms. This article provides a summary of this phenomenon and discusses some of its implications for atomic systems. Transitioning from the domain of photons to atoms opens new perspectives on fundamental concepts, such as the classification of entanglement of identical particles. It aids in the design of novel probes of quantities such as entanglement entropy by combining well established tools of AMO physics - unity single-atom detection, tunable interactions, and scalability - with the Hong-Ou-Mandel interference. Furthermore, it is now possible for established protocols in the photon community, such as measurement-induced entanglement, to be employed in atomic experiments that possess deterministic single-particle production and detection. Hence, the realization of the HOM effect with atoms represents a productive union of central ideas in quantum control of atoms and photons.Comment: 19 pages, 7 figure

    Wig-1, a novel regulator of N-Myc mRNA and N-Myc-driven tumor growth

    Get PDF
    Wig-1 is a transcriptional target of the p53 tumor suppressor and encodes an mRNA stability-regulating protein. We show here that Wig-1 knockdown causes a dramatic inhibition of N-Myc expression and triggers differentiation in neuroblastoma cells carrying amplified N-Myc. Transient Wig-1 knockdown significantly delays development of N-Myc-driven tumors in mice. We also show that N-Myc expression is induced upon moderate p53-activating stress, suggesting a role of the p53-Wig-1-N-Myc axis in promoting cell cycle re-entry upon p53-induced cell cycle arrest and DNA repair. Moreover, our findings raise possibilities for the improved treatment of poor prognosis neuroblastomas that carry amplified N-Myc

    Unrelenting plasmons

    Get PDF
    Following a brief historic introduction to plasmons, their useful properties and early applications, we highlight some of the key advances in the field over the past decade. We then discuss new directions for the future, such as the use of 2D materials and strong coupling phenomena, which are likely to shape the field over the next ten years. For centuries, metals were employed in optical applications only as mirrors and gratings. New vistas opened up in the late 1970s and early 1980s with the discovery of surface-enhanced Raman scattering and the use of surface plasmon (SP) resonances for sensing. However, it was not until the 1990s, with the appearance of accurate and reliable nanofabrication techniques, that plasmonics blossomed1. Initially, the attention focused on the exploitation of SPs (collective electronic oscillations at the surface of metals) for sensing, subwavelength waveguiding and extraordinary optical transmission2. Since then, the scientific and technological interest in SPs has expanded. Correspondingly, as illustrated in Fig. 1, the number of publications in the field has increased in a steady exponential fashion for more than two decades, and the momentum driving plasmonics research looks set to continue (...
    • 

    corecore