561 research outputs found

    EFFECTS OF AMLODIPIN AND METOPROLOL ON AUTONOMIC SYSTEM IN EMOTIONAL AND COLD TESTS IN HYPERTENSIVE PATIENTS WITH DIFFERENT PSYCHOLOGICAL PROFILE

    Get PDF
    Aim. To asses effects of amlodipin and metoprolol on autonomic system in emotional and cold tests in hypertensive patients with different psychological profile (PP) Material and methods. 61 patients with arterial hypertension of II grade were observed. Therapy with amlodipin or metoprolol was prescribed and allowed to reach target blood pressure (BP) level in all the patients. Patients were divided into 2 groups: 1-st one – patients with normal PP, 2-nd group – patients with subclinical depression. Patients were examined before and 30 days after therapy. Examination included ambulatory BP monitoring, assessment of autonomic status by variational intervalometry and spectral analysis of heart rate variability (HRV) in cold and emotional tests. Depression and anxiety levels were determined with Bek’s and HADS scales.  Results. Treatment with amlodipin  and metoprolol can result in improvement, worsening or unchanging of PP.  In hypertensive patients with subclinical depression improving their PP resulted in autonomic reaction change: sympathetic activity increases and reaction on stress becomes more adequate. If subclinical depression occurred in hypertensive patients because of amlodipin and metoprolol therapy, sympathetic system stress-reaction decreased and parasympathetic influence increased. Conclusion. The study results show necessity of psychometric examination of hypertensive patients in order to reveal subclinical depression and anxiety

    Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial

    Get PDF
    PURPOSE: Shortening the duration of antibiotic therapy (ABT) is a key measure in antimicrobial stewardship. The optimal duration of ABT for treatment of postoperative intra-abdominal infections (PIAI) in critically ill patients is unknown. METHODS: A multicentre prospective randomised trial conducted in 21 French intensive care units (ICU) between May 2011 and February 2015 compared the efficacy and safety of 8-day versus 15-day antibiotic therapy in critically ill patients with PIAI. Among 410 eligible patients (adequate source control and ABT on day 0), 249 patients were randomly assigned on day 8 to either stop ABT immediately (n = 126) or to continue ABT until day 15 (n = 123). The primary endpoint was the number of antibiotic-free days between randomisation (day 8) and day 28. Secondary outcomes were death, ICU and hospital length of stay, emergence of multidrug-resistant (MDR) bacteria and reoperation rate, with 45-day follow-up. RESULTS: Patients treated for 8 days had a higher median number of antibiotic-free days than those treated for 15 days (15 [6-20] vs 12 [6-13] days, respectively; P < 0.0001) (Wilcoxon rank difference 4.99 days [95% CI 2.99-6.00; P < 0.0001). Equivalence was established in terms of 45-day mortality (rate difference 0.038, 95% CI - 0.013 to 0.061). Treatments did not differ in terms of ICU and hospital length of stay, emergence of MDR bacteria or reoperation rate, while subsequent drainages between day 8 and day 45 were observed following short-course ABT (P = 0.041). CONCLUSION: Short-course antibiotic therapy in critically ill ICU patients with PIAI reduces antibiotic exposure. Continuation of treatment until day 15 is not associated with any clinical benefit. CLINICALTRIALS. GOV IDENTIFIER: NCT01311765

    Modelos para sistematização nas terras baixas do Rio Grande do Sul.

    Get PDF
    Este documento é o resultado do esforço da Embrapa Clima Temperado em atualizar os conhecimentos com relação à aplicação da geotecnologia na sistematização das áreas de terras baixas dos Estados do Sul do País.ODS 6

    Structural and Lattice-Dynamical Properties of Tb2O3 under Compression: A Comparative Study with Rare Earth and Related Sesquioxides

    Get PDF
    [EN] We report a joint experimental and theoretical investigation of the high pressure structural and vibrational properties of terbium sesquioxide (Tb2O3). Powder X-ray diffraction and Raman scattering measurements show that cubic Ia (3 ) over bar (C-type) Tb2O3 undergoes two phase transitions up to 25 GPa. We observe a first irreversible reconstructive transition to the monoclinic C2/m (B-type) phase at similar to 7 GPa and a subsequent reversible displacive transition from the monoclinic to the trigonal P (3) over bar m1 (A-type) phase at similar to I-2 GPa. Thus, Tb2O3 is found to follow the well- known C -> B -> A phase transition sequence found in other cubic rare earth sesquioxides with cations of larger atomic mass than Tb. Our ab initio theoretical calculations predict phase transition pressures and bulk moduli for the three phases in rather good agreement with experimental results. Moreover, Raman-active modes of the three phases have been monitored as a function of pressure, while lattice-dynamics calculations have allowed us to confirm the assignment of the experimental phonon modes in the C- and A-type phases as well as to make a tentative assignment of the symmetry of most vibrational modes in the B-type phase. Finally, we extract the bulk moduli and the Raman-active mode frequencies together with their pressure coefficients for the three phases of Tb2O3 . These results are thoroughly compared and discussed in relation to those reported for rare earth and other related sesquioxides as well as with new calculations for selected sesquioxides. It is concluded that the evolution of the volume and bulk modulus of all the three phases of these technologically relevant compounds exhibit a nearly linear trend with respect to the third power of the ionic radii of the cations and that the values of the bulk moduli for the three phases depend on the filling of the f orbitals.The authors are thankful for the financial support of Generalitat Valenciana under Project PROMETEO 2018/123-EFIMAT and of the Spanish Ministerio de Economia y Competitividad under Projects MAT2015-71035-R, MAT2016-75586-C4-2/3/4-P, and FIS2017-2017-83295-P as well as MALTA Consolider Team research network under project RED2018-102612-T. J.A.S. also acknowledges the Ramon y Cajal program for funding support through RYC-2015-17482. A.M. and P.R.-H. acknowledge computing time provided by Red Española de Supercomputación (RES) and the MALTA Consolider Team cluster. HP-XRD experiments were performed at MPSD beamline of Alba Synchrotron (experiment no. 2016071772). We would like to thank Oriol Blázquez (Universitat de Barcelona) for his contribution to the Raman measurements.Ibañez, J.; Sans-Tresserras, JÁ.; Cuenca-Gotor, VP.; Oliva, R.; Gomis, O.; Rodríguez-Hernández, P.; Muñoz, A.... (2020). Structural and Lattice-Dynamical Properties of Tb2O3 under Compression: A Comparative Study with Rare Earth and Related Sesquioxides. Inorganic Chemistry. 59(14):9648-9666. https://doi.org/10.1021/acs.inorgchem.0c00834S964896665914Pan, T.-M., Chen, F.-H., & Jung, J.-S. (2010). Structural and electrical characteristics of high-k Tb2O3 and Tb2TiO5 charge trapping layers for nonvolatile memory applications. Journal of Applied Physics, 108(7), 074501. doi:10.1063/1.3490179Kao, C. H., Liu, K. C., Lee, M. H., Cheng, S. N., Huang, C. H., & Lin, W. K. (2012). High dielectric constant terbium oxide (Tb2O3) dielectric deposited on strained-Si:C. Thin Solid Films, 520(8), 3402-3405. doi:10.1016/j.tsf.2011.10.173Gray, N. W., Prestgard, M. C., & Tiwari, A. (2014). Tb2O3 thin films: An alternative candidate for high-k dielectric applications. Applied Physics Letters, 105(22), 222903. doi:10.1063/1.4903072Geppert, I., Eizenberg, M., Bojarczuk, N. A., Edge, L. F., Copel, M., & Guha, S. (2010). Determination of band offsets, chemical bonding, and microstructure of the (TbxSc1−x)2O3/Si system. Journal of Applied Physics, 108(2), 024105. doi:10.1063/1.3427554Belaya, S. V., Bakovets, V. V., Boronin, A. I., Koshcheev, S. V., Lobzareva, M. N., Korolkov, I. V., & Stabnikov, P. A. (2014). Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate. Inorganic Materials, 50(4), 379-386. doi:10.1134/s0020168514040037Bakovets, V. V., Belaya, S. V., Lobzareva, M. N., & Maksimovskii, E. A. (2014). Kinetics of terbium oxide film growth from Tb(dpm)3 vapor. Inorganic Materials, 50(6), 576-581. doi:10.1134/s0020168514060016ZINKEVICH, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597-647. doi:10.1016/j.pmatsci.2006.09.002Warshaw, I., & Roy, R. (1961). POLYMORPHISM OF THE RARE EARTH SESQUIOXIDES1. The Journal of Physical Chemistry, 65(11), 2048-2051. doi:10.1021/j100828a030Brauer, G., & Pfeiffer, B. (1965). Mischphasen aus Praseodym(III)-oxid und Terbium(III)-oxid. Zeitschrift f�r anorganische und allgemeine Chemie, 341(5-6), 237-243. doi:10.1002/zaac.19653410503Shevthenko, A. V., & Lopato, L. M. (1985). DTA method applikation to the highest refractory oxide systems investigation. Thermochimica Acta, 93, 537-540. doi:10.1016/0040-6031(85)85135-2Hoekstra, H. R., & Gingerich, K. A. (1964). High-Pressure B-Type Polymorphs of Some Rare-Earth Sesquioxides. Science, 146(3648), 1163-1164. doi:10.1126/science.146.3648.1163Sawyer, J. O., Hyde, B. G., & Eyring, L. (1965). Pressure and Polymorphism in the Rare Earth Sesquioxides. Inorganic Chemistry, 4(3), 426-427. doi:10.1021/ic50025a043Manjón, F., Sans, J., Ibáñez, J., & Pereira, A. (2019). Pressure-Induced Phase Transitions in Sesquioxides. Crystals, 9(12), 630. doi:10.3390/cryst9120630Jiang, S., Liu, J., Lin, C., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2010). Pressure-induced phase transition in cubic Lu2O3. Journal of Applied Physics, 108(8), 083541. doi:10.1063/1.3499301Lin, C.-M., Wu, K.-T., Hung, T.-L., Sheu, H.-S., Tsai, M.-H., Lee, J.-F., & Lee, J.-J. (2010). Phase transitions in under high pressure. Solid State Communications, 150(33-34), 1564-1569. doi:10.1016/j.ssc.2010.05.046Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2013). Anharmonic behavior and structural phase transition in Yb2O3. AIP Advances, 3(12), 122123. doi:10.1063/1.4858421Sahu, P. C., Lonappan, D., & Shekar, N. V. C. (2012). High Pressure Structural Studies on Rare-Earth Sesquioxides. Journal of Physics: Conference Series, 377, 012015. doi:10.1088/1742-6596/377/1/012015Irshad, K. A., Anees, P., Sahoo, S., Sanjay Kumar, N. R., Srihari, V., Kalavathi, S., & Chandra Shekar, N. V. (2018). Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: Experiment and ab initio calculations. Journal of Applied Physics, 124(15), 155901. doi:10.1063/1.5049223Yan, D., Wu, P., Zhang, S. P., Liang, L., Yang, F., Pei, Y. L., & Chen, S. (2013). Assignments of the Raman modes of monoclinic erbium oxide. Journal of Applied Physics, 114(19), 193502. doi:10.1063/1.4831663Ren, X., Yan, X., Yu, Z., Li, W., & Wang, L. (2017). Photoluminescence and phase transition in Er2O3 under high pressure. Journal of Alloys and Compounds, 725, 941-945. doi:10.1016/j.jallcom.2017.07.219Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154gLonappan, D., Shekar, N. V. C., Ravindran, T. R., & Sahu, P. C. (2010). High-pressure phase transition in Ho2O3. Materials Chemistry and Physics, 120(1), 65-67. doi:10.1016/j.matchemphys.2009.10.022Jiang, S., Liu, J., Li, X., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2011). Phase transformation of Ho2O3at high pressure. Journal of Applied Physics, 110(1), 013526. doi:10.1063/1.3603027Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2014). Raman scattering of rare earth sesquioxide Ho2O3: A pressure and temperature dependent study. Journal of Applied Physics, 116(13), 133504. doi:10.1063/1.4896832Yan, X., Ren, X., He, D., Chen, B., & Yang, W. (2014). Mechanical behaviors and phase transition of Ho2O3nanocrystals under high pressure. Journal of Applied Physics, 116(3), 033507. doi:10.1063/1.4890341Sharma, N. D., Singh, J., Dogra, S., Varandani, D., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2011). Pressure-induced anomalous phase transformation in nano-crystalline dysprosium sesquioxide. Journal of Raman Spectroscopy, 42(3), 438-444. doi:10.1002/jrs.2720Jiang, S., Liu, J., Lin, C., Bai, L., Zhang, Y., Li, X., … Wang, H. (2013). Structural transformations in cubic Dy2O3 at high pressures. Solid State Communications, 169, 37-41. doi:10.1016/j.ssc.2013.06.027Chen, H., He, C., Gao, C., Ma, Y., Zhang, J., Wang, X., … Zou, G. (2007). The structural transition of Gd2O3nanoparticles induced by high pressure. Journal of Physics: Condensed Matter, 19(42), 425229. doi:10.1088/0953-8984/19/42/425229Hai-Yong, C., Chun-Yuan, H., Chun-Xiao, G., Jia-Hua, Z., Shi-Yong, G., Hong-Liang, L., … Guang-Tian, Z. (2007). Structural Transition of Gd 2 O 3  :Eu Induced by High Pressure. Chinese Physics Letters, 24(1), 158-160. doi:10.1088/0256-307x/24/1/043Zhang, F. X., Lang, M., Wang, J. W., Becker, U., & Ewing, R. C. (2008). Structural phase transitions of cubicGd2O3at high pressures. Physical Review B, 78(6). doi:10.1103/physrevb.78.064114Dilawar, N., Varandani, D., Mehrotra, S., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2008). Anomalous high pressure behaviour in nanosized rare earth sesquioxides. Nanotechnology, 19(11), 115703. doi:10.1088/0957-4484/19/11/115703Bai, L., Liu, J., Li, X., Jiang, S., Xiao, W., Li, Y., … Zhang, D. (2009). Pressure-induced phase transformations in cubic Gd2O3. Journal of Applied Physics, 106(7), 073507. doi:10.1063/1.3236580Zou, X., Gong, C., Liu, B., Li, Q., Li, Z., Liu, B., … Song, H. (2011). X-ray diffraction of cubic Gd2 O3 /Er under high pressure. physica status solidi (b), 248(5), 1123-1127. doi:10.1002/pssb.201000706Zhang, C. C., Zhang, Z. M., Dai, R. C., Wang, Z. P., & Ding, Z. J. (2011). High Pressure Luminescence and Raman Studies on the Phase Transition of Gd2O3:Eu3+ Nanorods. Journal of Nanoscience and Nanotechnology, 11(11), 9887-9891. doi:10.1166/jnn.2011.5228Yang, X., Li, Q., Liu, Z., Bai, X., Song, H., Yao, M., … Liu, B. (2013). Pressure-Induced Amorphization in Gd2O3/Er3+ Nanorods. The Journal of Physical Chemistry C, 117(16), 8503-8508. doi:10.1021/jp312705uChen, G., Haire, R. G., & Peterson, J. R. (1991). Effect of pressure on cubic (C-type) Eu2O3studied via Eu3+luminescence. High Pressure Research, 6(6), 371-377. doi:10.1080/08957959208201045Chen, G., Stump, N. ., Haire, R. ., & Peterson, J. . (1992). Study of the phase behavior of Eu2O3 under pressure via luminescence of Eu3+. Journal of Alloys and Compounds, 181(1-2), 503-509. doi:10.1016/0925-8388(92)90347-cDilawar, N., Varandani, D., Pandey, V. P., Kumar, M., Shivaprasad, S. M., Sharma, P. K., & Bandyopadhyay, A. K. (2006). Structural Transition in Nanostructured Eu2O3 Under High Pressures. Journal of Nanoscience and Nanotechnology, 6(1), 105-113. doi:10.1166/jnn.2006.17913Sheng, J., Li-Gang, B., Jing, L., Wan-Sheng, X., Xiao-Dong, L., Yan-Chun, L., … Li-Rong, Z. (2009). The Phase Transition of Eu 2 O 3 under High Pressures. Chinese Physics Letters, 26(7), 076101. doi:10.1088/0256-307x/26/7/076101Irshad, K. A., Chandra Shekar, N. V., Srihari, V., Pandey, K. K., & Kalavathi, S. (2017). High pressure structural phase transitions in Ho: Eu2O3. Journal of Alloys and Compounds, 725, 911-915. doi:10.1016/j.jallcom.2017.07.224Yu, Z., Wang, Q., Ma, Y., & Wang, L. (2017). X-ray diffraction and spectroscopy study of nano-Eu2O3 structural transformation under high pressure. Journal of Alloys and Compounds, 701, 542-548. doi:10.1016/j.jallcom.2017.01.143Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019Jiang, S., Liu, J., Lin, C., Li, X., & Li, Y. (2013). High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3. Journal of Applied Physics, 113(11), 113502. doi:10.1063/1.4795504Liu, D., Lei, W., Li, Y., Ma, Y., Hao, J., Chen, X., … Zou, G. (2009). High-Pressure Structural Transitions of Sc2O3by X-ray Diffraction, Raman Spectra, and Ab Initio Calculations. Inorganic Chemistry, 48(17), 8251-8256. doi:10.1021/ic900889vYusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2009). High-Pressure Phase Transition to the Gd2S3 Structure in Sc2O3: A New Trend in Dense Structures in Sesquioxides. Inorganic Chemistry, 48(16), 7537-7543. doi:10.1021/ic9001253Ovsyannikov, S. V., Bykova, E., Bykov, M., Wenz, M. D., Pakhomova, A. S., Glazyrin, K., … Dubrovinsky, L. (2015). Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. Journal of Applied Physics, 118(16), 165901. doi:10.1063/1.4933391Husson, E., Proust, C., Gillet, P., & Itié, J. . (1999). Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy. Materials Research Bulletin, 34(12-13), 2085-2092. doi:10.1016/s0025-5408(99)00205-6Bai, X., Song, H. W., Liu, B. B., Hou, Y. Y., Pan, G. H., & Ren, X. G. (2008). Effects of High Pressure on the Luminescent Properties of Nanocrystalline and Bulk Y2O3:Eu3+. Journal of Nanoscience and Nanotechnology, 8(3), 1404-1409. doi:10.1166/jnn.2008.18204Jovanić, B. R., Dramićanin, M., Viana, B., Panić, B., & Radenković, B. (2008). High-pressure optical studies of Y2O3:Eu3+nanoparticles. Radiation Effects and Defects in Solids, 163(12), 925-931. doi:10.1080/10420150802082705Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., … Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701Halevy, I., Carmon, R., Winterrose, M. L., Yeheskel, O., Tiferet, E., & Ghose, S. (2010). Pressure-induced structural phase transitions in Y2O3sesquioxide. Journal of Physics: Conference Series, 215, 012003. doi:10.1088/1742-6596/215/1/012003Dai, R. C., Zhang, Z. M., Zhang, C. C., & Ding, Z. J. (2010). Photoluminescence and Raman Studies of Y2O3:Eu3+ Nanotubes Under High Pressure. Journal of Nanoscience and Nanotechnology, 10(11), 7629-7633. doi:10.1166/jnn.2010.2752DAI, R., WANG, Z., ZHANG, Z., & DING, Z. (2010). Photoluminescence study of SiO2 coated Eu3+:Y2O3 core-shells under high pressure. Journal of Rare Earths, 28, 241-245. doi:10.1016/s1002-0721(10)60275-xYusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2010). Dense Yttria Phase Eclipsing the A-Type Sesquioxide Structure: High-Pressure Experiments and ab initio Calculations. Inorganic Chemistry, 49(10), 4478-4485. doi:10.1021/ic100042zBose, P. P., Gupta, M. K., Mittal, R., Rols, S., Achary, S. N., Tyagi, A. K., & Chaplot, S. L. (2012). High Pressure Phase Transitions in Yttria, Y2O3. Journal of Physics: Conference Series, 377, 012036. doi:10.1088/1742-6596/377/1/012036Srivastava, A. M., Renero-Lecuna, C., Santamaría-Pérez, D., Rodríguez, F., & Valiente, R. (2014). Pressure-induced Pr3+ 3P0 luminescence in cubic Y2O3. Journal of Luminescence, 146, 27-32. doi:10.1016/j.jlumin.2013.09.028Yamanaka, T., Nagai, T., Okada, T., & Fukuda, T. (2005). Structure change of Mn2O3under high pressure and pressure-induced transition. Zeitschrift für Kristallographie - Crystalline Materials, 220(11), 938-945. doi:10.1524/zkri.2005.220.11_2005.938Santillán, J., Shim, S.-H., Shen, G., & Prakapenka, V. B. (2006). High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3type. Geophysical Research Letters, 33(15). doi:10.1029/2006gl026423Shim, S.-H., LaBounty, D., & Duffy, T. S. (2011). Raman spectra of bixbyite, Mn2O3, up to 40 GPa. Physics and Chemistry of Minerals, 38(9), 685-691. doi:10.1007/s00269-011-0441-4Hong, F., Yue, B., Hirao, N., Liu, Z., & Chen, B. (2017). Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure. Scientific Reports, 7(1). doi:10.1038/srep44078Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107Liu, D., Lei, W. W., Zou, B., Yu, S. D., Hao, J., Wang, K., … Zou, G. T. (2008). High-pressure x-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 104(8), 083506. doi:10.1063/1.2999369Qi, J., Liu, J. F., He, Y., Chen, W., & Wang, C. (2011). Compression behavior and phase transition of cubic In2O3 nanocrystals. Journal of Applied Physics, 109(6), 063520. doi:10.1063/1.3561363Garcia-Domene, B., Ortiz, H. M., Gomis, O., Sans, J. A., Manjón, F. J., Muñoz, A., … Tyagi, A. K. (2012). High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. Journal of Applied Physics, 112(12), 123511. doi:10.1063/1.4769747García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599Gomis, O., Santamaría-Pérez, D., Ruiz-Fuertes, J., Sans, J. A., Vilaplana, R., Ortiz, H. M., … Mollar, M. (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics, 116(13), 133521. doi:10.1063/1.4897241Mcclure, J. P. High Pressure Phase Transistions in the Lanthanide Sesquioxides. Ph.D. Thesis, University of Nevada, Las Vegas, 2009, pp 1–154.Hirosaki, N., Ogata, S., & Kocer, C. (2003). Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. Journal of Alloys and Compounds, 351(1-2), 31-34. doi:10.1016/s0925-8388(02)01043-5Marsella, L., & Fiorentini, V. (2004). Structure and stability of rare-earth and transition-metal oxides. Physical Review B, 69(17). doi:10.1103/physrevb.69.172103Petit, L., Svane, A., Szotek, Z., & Temmerman, W. M. (2005). First-principles study of rare-earth oxides. Physical Review B, 72(20). doi:10.1103/physrevb.72.205118WU, B., ZINKEVICH, M., WANG, C., & ALDINGER, F. (2006). Ab initio energetic study of oxide ceramics with rare-earth elements. Rare Metals, 25(5), 549-555. doi:10.1016/s1001-0521(06)60097-1Singh, N., Saini, S. M., Nautiyal, T., & Auluck, S. (2006). Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd). Journal of Applied Physics, 100(8), 083525. doi:10.1063/1.2353267Mikami, M., & Nakamura, S. (2006). Electronic structure of rare-earth sesquioxides and oxysulfides. Journal of Alloys and Compounds, 408-412, 687-692. doi:10.1016/j.jallcom.2005.01.068Wu, B., Zinkevich, M., Aldinger, F., Wen, D., & Chen, L. (2007). Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory. Journal of Solid State Chemistry, 180(11), 3280-3287. doi:10.1016/j.jssc.2007.09.022Rahm, M., & Skorodumova, N. V. (2009). Phase stability of the rare-earth sesquioxides under pressure. Physical Review B, 80(10). doi:10.1103/physrevb.80.104105Jiang, H., Gomez-Abal, R. I., Rinke, P., & Scheffler, M. (2009). Localized and Itinerant States in Lanthanide Oxides United byGW @ LDA+U. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.126403Gillen, R., Clark, S. J., & Robertson, J. (2013). Nature of the electronic band gap in lanthanide oxides. Physical Review B, 87(12). doi:10.1103/physrevb.87.125116Richard, D., Muñoz, E. L., Rentería, M., Errico, L. A., Svane, A., & Christensen, N. E. (2013). AbinitioLSDA and LSDA+Ustudy of pure and Cd-doped cubic lanthanide sesquioxides. Physical Review B, 88(16). doi:10.1103/physrevb.88.165206Richard, D., Errico, L. A., & Rentería, M. (2016). Structural properties and the pressure-induced C → A phase transition of lanthanide sesquioxides from DFT and DFT + U calculations. Journal of Alloys and Compounds, 664, 580-589. doi:10.1016/j.jallcom.2015.12.236Ogawa, T., Otani, N., Yokoi, T., Fisher, C. A. J., Kuwabara, A., Moriwake, H., … Takata, M. (2018). Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Physical Chemistry Chemical Physics, 20(24), 16518-16527. doi:10.1039/c8cp02497aPathak, A. K., & Vazhappilly, T. (2018). Ab Initio Study on Structure, Elastic, and Mechanical Properties of Lanthanide Sesquioxides. physica status solidi (b), 255(6), 1700668. doi:10.1002/pssb.201700668Lonappan, D., Chandra Shekar, N. V., Sahu, P. C., Kumar, J., Paul, R., & Paul, P. (2010). Unusually large structural stability of terbium oxide phase under high pressure. Journal of Alloys and Compounds, 490(1-2), 47-49. doi:10.1016/j.jallcom.2009.10.068Veber, P., Velázquez, M., Gadret, G., Rytz, D., Peltz, M., & Decourt, R. (2015). Flux growth at 1230 °C of cubic Tb2O3single crystals and characterization of their optical and magnetic properties. CrystEngComm, 17(3), 492-497. doi:10.1039/c4ce02006eIbáñez,

    Luminescent properties of Bi-doped polycrystalline KAlCl4

    Full text link
    We observed an intensive near-infrared luminescence in Bi-doped KAlCl4 polycrystalline material. Luminescence dependence on the excitation wavelength and temperature of the sample was studied. Our experimental results allow asserting that the luminescence peaked near 1 um belongs solely to Bi+ ion which isomorphically substitutes potassium in the crystal. It was also demonstrated that Bi+ luminescence features strongly depend on the local ion surroundings

    Inferring the role of transcription factors in regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression profiles obtained from multiple perturbation experiments are increasingly used to reconstruct transcriptional regulatory networks, from well studied, simple organisms up to higher eukaryotes. Admittedly, a key ingredient in developing a reconstruction method is its ability to integrate heterogeneous sources of information, as well as to comply with practical observability issues: measurements can be scarce or noisy. In this work, we show how to combine a network of genetic regulations with a set of expression profiles, in order to infer the functional effect of the regulations, as inducer or repressor. Our approach is based on a consistency rule between a network and the signs of variation given by expression arrays.</p> <p>Results</p> <p>We evaluate our approach in several settings of increasing complexity. First, we generate artificial expression data on a transcriptional network of <it>E. coli </it>extracted from the literature (1529 nodes and 3802 edges), and we estimate that 30% of the regulations can be annotated with about 30 profiles. We additionally prove that at most 40.8% of the network can be inferred using our approach. Second, we use this network in order to validate the predictions obtained with a compendium of real expression profiles. We describe a filtering algorithm that generates particularly reliable predictions. Finally, we apply our inference approach to <it>S. cerevisiae </it>transcriptional network (2419 nodes and 4344 interactions), by combining ChIP-chip data and 15 expression profiles. We are able to detect and isolate inconsistencies between the expression profiles and a significant portion of the model (15% of all the interactions). In addition, we report predictions for 14.5% of all interactions.</p> <p>Conclusion</p> <p>Our approach does not require accurate expression levels nor times series. Nevertheless, we show on both data, real and artificial, that a relatively small number of perturbation experiments are enough to determine a significant portion of regulatory effects. This is a key practical asset compared to statistical methods for network reconstruction. We demonstrate that our approach is able to provide accurate predictions, even when the network is incomplete and the data is noisy.</p

    EPIDEMIOLOGY OF PRIMARY HIP ARTHROPLASTY: REPORT FROM REGISTER OF VREDEN RUSSIAN RESEARCH INSTITUTE OF TRAUMATOLOGY AND ORTHOPEDICS

    Get PDF
    The   paper   presents   data   analysis   of  the   Hip   Arthroplasty  Register   of  Vreden   Russian   Research   Institute of Traumatology and Orthopedics, namely information on 37373 primary THA performed at the Vreden Institute and at several other orthopedic centers and 1200 hip replacements at other hospitals of St. Petersburg.There were 1.5 times more women in the studied cohort than men. A significant predominance of women with dysplastic osteoarthritis (72.4%) and rheumatoid arthritis (82.1%) was reported. A male predominance was noted in patients with secondary osteoarthritis (53.1%), post-traumatic changes of hip (61.0%) and osteonecrosis of the femoral head (68.6 %). The mean age of patients was 58.0±12.9 years (95% CI from 57.9 to 58.1, median 59 years). Age data of the study revealed that  patients were 10-12 years younger than reported in the national  arthroplasty registers of other countries.Total  hip arthroplasty was performed  in the  absolute  majority  of patients – 37295  cases (99,8%).  Uncemented implants  were used in 59.3% of cases, hybrid – in 29.6%, cemented – in 10.2%, reverse-hybrid – in 0.9% of all patients. The  most  common  bearing  used  was metal  on  crosslink  polyethylene, which  was applied  in 50.1% of all cases of arthroplasty. The  type  of fixation  of the  implant,  and  the  use of different  bearings  varied  in different  age groups. The paper presents  not only the absolute  numbers  of the data, but also demonstrated the dynamics  of the changes in time starting from 2007.The  present  epidemiological  study  does not  claim the  absolute  completeness of the  presented data,  but  contains the  analysis of the  large number  of cases, comparable  with  follow-ups  of patients in some national  registers  of certain European countries. The authors  analyzed about  10% of all cases of hip replacements performed  on the territory of the Russian Federation in ten-year  period

    Utilização da Tecnologia Sulco-camalhão na Produção de Soja e Milho em Terras Baixas do Rio Grande do Sul.

    Get PDF
    As pesquisas da Embrapa Clima Temperado direcionadas ao cultivo de soja e milho utilizando a tecnologia sulco-camalhão em áreas de terras baixas do Rio Grande do Sul iniciaram há mais de duas décadas. Historicamente, os resultados sempre indicaram benefícios ao desenvolvimento das culturas e aumento de produtividade, independentemente das condições climáticas da safra. Entretanto, a expansão e adoção plena da tecnologia nesse agroecossistema é recente, tendo sido impulsionada pela introdução no mercado nacional de outras duas tecnologias associadas, a sistematização do solo com declividade variada e o uso de politubos para a irrigação, os quais possibilitaram adequar a superfície do terreno com menor movimentação de solo, permitindo uma irrigação precisa e eficiente. Nesse cenário tecnológico, concebeu-se o Projeto Sulco, uma parceria entre Embrapa Clima Temperado, que atua como responsável técnica, e as empresas privadas Centeno & Bergamasco LTDA, Trimble Brasil Soluções, AGCO América do Sul, PIPE Brasil, KLR Kohler Implementos Agrícolas e Pioneer Sementes Brasil. Essa parceria visa o refinamento e a difusão da tecnologia sulco-camalhão para cultivos de sequeiro em terras baixas do Sul do Brasil. Para tanto, tem implantado lavouras-piloto de soja e de milho em várias regiões arrozeiras do Rio Grande do Sul. Todas as iniciativas realizadas têm mostrado que a tecnologia representa uma alternativa acessível e de baixo custo para a produção de soja e milho com elevadas produtividades em terras baixas, garantindo rentabilidade e estabilidade de produção e contribuindo fortemente para a sustentabilidade do sistema produtivo. Esta publicação tem o propósito d
    corecore