411 research outputs found

    Shear viscosity and nonlinear behaviour of whole blood under large amplitude oscillatory shear

    Get PDF
    We investigated experimentally the rheological behavior of whole human blood subjected to large amplitude oscillatory shear under strain control to assess its nonlinear viscoelastic response. In these rheological tests, the shear stress response presented higher harmonic contributions, revealing the nonlinear behavior of human blood that is associated with changes in its internal microstructure. For the rheological conditions investigated, intra-cycle strain-stiffening and intra-cycle shear-thinning behavior of the human blood samples were observed and quantified based on the Lissajous–Bowditch plots. The results demonstrated that the dissipative nature of whole blood is more intense than its elastic component. We also assessed the effect of adding EDTA anticoagulant on the shear viscosity of whole blood subjected to steady shear flow. We found that the use of anticoagulant in appropriate concentrations did not influence the shear viscosity and that blood samples without anticoagulant preserved their rheological characteristics approximately for up to 8 minutes before coagulation became significant

    Monitorization of hexanal as lipid oxidation indicator in a processed meat product packaged with poly(lactic acid)/clay nanocomposite films

    Get PDF
    One of the most detrimental processes in fatty foodstuffs is lipid oxidation, which occurs during production and storage, and influences food composition and safety. Through the analysis of volatile lipid oxidation products we can have an insight into the oxidation, and some volatiles, such as hexanal, which can be markers of undergoing oxidation processes. Hexanal is formed when fatty acids are oxidized and is one of many well-documented aromatic components that contributes to flavour and aroma in common food products containing fatty acids. During the last decade, the interest in polymer layered silicate (PLS) nanocomposites has rapidly increased due to their potential for enhancing physical, chemical, and mechanical properties of conventional materials. Polymer nanocomposites are represented by a polymeric matrix reinforced with nanoscale fillers, among them the most common silicate clays are represented by montmorillonite (MMT), which is naturally occurring and readily available in large quantities. The presence of MMT can lead to materials which generally exhibit great property enhancements, mainly due to its intercalation or exfoliation into the polymer chains. In this work natural MMT Cloisite Na+ was incorporated in PLA. The PLA/Cloisite® Na+ films were prepared through a two-step process. In the first step, PLA pellets were fed into a corotating laboratory twin-screw extruder at 170 °C and 50 rpm for 2 min. Subsequently, Cloisite® Na+ powder (5%, w/w) were added and mixed. After extrusion, the melted matter was then pressed with a P300P hot press at 170 °C and 100 bar to obtain the PLA/Cloisite® Na+ films. Salami slices were packaged with PLA-OMMT film and with a control film (PLA). After different storage times (0, 15, 30, 60 and 90 days), salami slices were analysed regarding their hexanal content. The hexanal derivatization was performed in a solution of 2,4-dinitrophenylhydrazine in sulfuric acid during 4 h in the dark, and the hexanal extraction was performed with n-hexane and evaporation till dryness. The residue was dissolved in methanol, filtered and analysed. The quantification of hexanal was performed by Ultra High Performance Liquid Chromatography coupled with Diode Array Detector at 365 nm, with a Pre-column AcquityTM UPLC® BEH C18 (2.1 x 5 mm, 1.7 μm particle size) and a column AcquityTM UPLC® BEH C18 (2.1 × 50 mm, 1.7 μm particle size), the mobile-phase was acetonitrile-water (75:25, v/v). The amount of hexanal in packaged salami decreased in the first 60 days of storage. In this period of time the hexanal content of the salami packaged with the PLA/Cloisite® Na+ films was lower than the salami packaged with control film, except after 15 days of storage, where there was no difference between two films. After 90 days of storage, the amount of hexanal in the samples increased, although it was higher in the samples packaged with control film (94.7 ± 6.02 μg/100g salami) than salami packaged with PLA/Cloisite® Na+ films (65.1 ± 6.12 μg/100g salami). The presence of MMT in the polymer film can reduce the lipid oxidation of processed meat products, extending their shelf life. Further studies to evaluate differences between PLA and the nanocomposite (PLA-5%Cloisite®Na+) in what regards to the mechanical and barrier properties are in progress.This work was supported by the research project “Labelling and tracking of nanoclay from food packaging nanocomposites: a food safety issue – NanoPack4Food” (2014DAN1019) under the Cooperative Programme of the Agreement on Scientific Cooperation between National Research Council of Italy (CNR) and Foundation for Science and Technology of Portugal (FCT)N/

    Behaviour of piozoelectric devices embedded in bone cement

    Get PDF
    Bone cements based on polymethacrylate (PMMA) are essential products in joint arthroplasty. PMMA bone cement function is to locate the implants components in the body skeleton, load transition through the joint into the bone and muscle surrounding for a very for a very long period of time. Its mechanical properties are well established in the literature. Since bone cement fills the void between the prosthesis (polymer or metallic) and bone, it is subjected to high stress and has to operate in a relatively aggressive environment, like human body. Therefore, based on surrounding environment PMMA bone cements application, this material has specific mechanical properties that enhance a good performance in this condition. These stresses are mainly measured indirectly with non-invasive methods. In-situ measurements would be more interesting to really understand and quantify these stresses. Piezoelectric devices are an interesting way to measure forces in difficult accessibility environment, since they are self-power, i. e., they are able to generate an electric signal by converting mechanical energy into electrics with no need for power supply. When embedded in bone cement one expects to be able to analyze the health structure in real-time. Positioning of the sensing device is a critical factor worthy of a thorough study in order to understand its behavior to surroundings

    Magnetic properties of nanoscale crystalline maghemite obtained by a new synthetic route

    Get PDF
    AbstractIn this work we describe the synthesis and characterization of maghemite nanoparticles obtained by a new synthetic route. The material was synthesized using triethylamine as a coprecipitation agent in the presence of the organic ligand N,N′-bis(3,5-di-tert-butyl-catechol)-2,4-diaminotoluene (LCH3). Mössbauer spectrum at 4K shows typical hyperfine parameters of maghemite and Transmission Electron Microscopy images reveal that the nanoparticles have a mean diameter of 3.9nm and a narrow size distribution. AC magnetic susceptibility in zero field presents an Arrhenius behavior with unreasonable relaxation parameters due to the strong influence of dipolar interaction. In contrast when the measurements are performed in a 1kOe field, the effect of dipolar interactions becomes negligible and the obtained parameters are in good agreement with the static magnetic properties. The dynamic energy barrier obtained from the AC susceptibility results is larger than the expected from the average size observed by HRTEM results, evidencing the strong influence of the surface contribution to the anisotropy

    A novel hybrid material with calcium and strontium release capability

    Get PDF
    The preparation of PDMS–TEOS–CaO hybrid materials by sol–gel techniques has been widely described in previous works. Calcium nitrate is the most common source of calcium used in these preparations. However, to remove possible toxic nitrate by-products a thermal treatment is necessary at temperatures above 500 1C, which leads to the degradation of the polymeric components of the hybrids. Strontium has already shown some promising results in the therapeutic area, being used in cases of osteoporosis and low bone density. In this study a new potential bioactive hybrid material was prepared, by sol–gel techniques, using calcium acetate as a novel calcium source. Also, for the first time, incorporation of strontium in a PDMS–TEOS hybrid system was evaluated. Samples were characterized before and after immersion in Kokubo’s Simulated Body Fluid (SBF) by SEM, EDS, ICP and FT-IR spectroscopy

    Androgens and low density lipoprotein-cholesterol interplay in modulating prostate cancer cell fate and metabolism

    Get PDF
    Background: Androgens, the known drivers of prostate cancer (PCa), have been indicated as important metabolic regulators with a relevant role in stimulating lipid metabolism. Also, the relationship between obesity and the aggressiveness of PCa has been established. However, it is unknown if the androgenic hormonal environment may alter the response of PCa cells to lipid availability. Purpose: The present study evaluated the effect of 5 alpha-dihydrotestosterone (DHT) in regulating lipid metabolism, and the interplay between this hormone and low-density lipoprotein (LDL)-cholesterol in modulating PCa cells fate.Methods: Non-neoplastic and neoplastic PCa cells were treated with 10 nM DHT, and the expression of fatty acids transporter, fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A) evaluated. PCa cells were also exposed to LDL (100 mu g/ml) in the presence or absence of DHT.Results: Treatment with DHT upregulated the expression of FASN and CPT1A in androgen-sensitive PCa cells. In contrast, LDL supplementation suppressed FASN expression regardless of the presence of DHT, whereas aug-menting CPT1A levels. Our results also showed that LDL-cholesterol increased PCa cells viability, proliferation, and migration dependently on the presence of DHT. Moreover, LDL and DHT synergistically enhanced the accumulation of lipid droplets in PCa cells.Conclusions: The obtained results show that androgens deregulate lipid metabolism and enhance the effects of LDL increasing PCa cells viability, proliferation and migration. The present findings support clinical data linking obesity with PCa and first implicate androgens in this relationship. Also, they sustain the application of phar-macological approaches targeting cholesterol availability and androgens signaling simultaneously.info:eu-repo/semantics/publishedVersio

    Safety and Health at Work - Assessment tool: Dairy Products

    Get PDF
    This manual aims to assist the Work Health and Safety Assessment Tool – Dairy Products user, in carrying out a simplified and easy-to-use occupational risk assessment with a view to adopting risk control solutions at workplaces. The design of this tool trie to provide an instrument capable of being used without internet access or specific software installation. In addition to its main purpose, this tool can also be used for workers consultation or training actions, provided as a complement of the other instruments developed within the scope of this project. The tool is organized in three distinct parts (see Figure 1): the first, where a checklist is filled out, from which a graphical overview is obtained, which will give the overview of the level of risk control (second part). This synthesis of results allows the user to immediately visualize the level of control of the main risks and in which will have to make major interventions. Finally, the third part appears, where a report is generated with solutions, particularized for each one of the risks in which the adoption of measures proves necessary.info:eu-repo/semantics/publishedVersio
    corecore