148 research outputs found

    Impaired innate interferon induction in severe therapy resistant atopic asthmatic children

    Get PDF
    Deficient type I interferon-β and type III interferon-λ induction by rhinoviruses has previously been reported in mild/moderate atopic asthmatic adults. No studies have yet investigated if this occurs in severe therapy resistant asthma (STRA). Here, we show that compared with non-allergic healthy control children, bronchial epithelial cells cultured ex vivo from severe therapy resistant atopic asthmatic children have profoundly impaired interferon-β and interferon-λ mRNA and protein in response to rhinovirus (RV) and polyIC stimulation. Severe treatment resistant asthmatics also exhibited increased virus load, which negatively correlated with interferon mRNA levels. Furthermore, uninfected cells from severe therapy resistant asthmatic children showed lower levels of Toll-like receptor-3 mRNA and reduced retinoic acid inducible gene and melanoma differentiation-associated gene 5 mRNA after RV stimulation. These data expand on the original work, suggesting that the innate anti-viral response to RVs is impaired in asthmatic tissues and demonstrate that this is a feature of STRA

    Pulmonary epithelial cell-derived cytokine TGF-β1 Is a critical cofactor for enhanced innate lymphoid cell function

    Get PDF
    SummaryEpithelial cells orchestrate pulmonary homeostasis and pathogen defense and play a crucial role in the initiation of allergic immune responses. Maintaining the balance between homeostasis and inappropriate immune activation and associated pathology is particularly complex at mucosal sites that are exposed to billions of potentially antigenic particles daily. We demonstrated that epithelial cell-derived cytokine TGF-β had a central role in the generation of the pulmonary immune response. Mice that specifically lacked epithelial cell-derived TGF-β1 displayed a reduction in type 2 innate lymphoid cells (ILCs), resulting in suppression of interleukin-13 and hallmark features of the allergic response including airway hyperreactivity. ILCs in the airway lumen were primed to respond to TGF-β by expressing the receptor TGF-βRII and ILC chemoactivity was enhanced by TGF-β. These data demonstrate that resident epithelial cells instruct immune cells, highlighting the central role of the local environmental niche in defining the nature and magnitude of immune reactions

    Pulmonary Epithelial Cell-Derived Cytokine TGF-β1 Is a Critical Cofactor for Enhanced Innate Lymphoid Cell Function.

    Get PDF
    Epithelial cells orchestrate pulmonary homeostasis and pathogen defense and play a crucial role in the initiation of allergic immune responses. Maintaining the balance between homeostasis and inappropriate immune activation and associated pathology is particularly complex at mucosal sites that are exposed to billions of potentially antigenic particles daily. We demonstrated that epithelial cell-derived cytokine TGF-β had a central role in the generation of the pulmonary immune response. Mice that specifically lacked epithelial cell-derived TGF-β1 displayed a reduction in type 2 innate lymphoid cells (ILCs), resulting in suppression of interleukin-13 and hallmark features of the allergic response including airway hyperreactivity. ILCs in the airway lumen were primed to respond to TGF-β by expressing the receptor TGF-βRII and ILC chemoactivity was enhanced by TGF-β. These data demonstrate that resident epithelial cells instruct immune cells, highlighting the central role of the local environmental niche in defining the nature and magnitude of immune reactions

    A Comparison of Shiga-Toxin 2 Bacteriophage from Classical Enterohemorrhagic Escherichia coli Serotypes and the German E. coli O104:H4 Outbreak Strain

    Get PDF
    Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors
    • …
    corecore