5,910 research outputs found

    Interference of stochastic resonances: Splitting of Kramers' rate

    Full text link
    We consider the escape of particles located in the middle well of a symmetric triple well potential driven sinusoidally by two forces such that the potential wells roll as in stochastic resonance and the height of the potential barrier oscillates symmetrically about a mean as in resonant activation. It has been shown that depending on their phase difference the application of these two synchronized signals may lead to a splitting of time averaged Kramers' escape rate and a preferential product distribution in a parallel chemical reaction in the steady state

    Bayesian reconstruction of binary media with unresolved fine-scale spatial structures

    Get PDF
    We present a Bayesian technique to estimate the fine-scale properties of a binary medium from multiscale observations. The binary medium of interest consists of spatially varying proportions of low and high permeability material with an isotropic structure. Inclusions of one material within the other are far smaller than the domain sizes of interest, and thus are never explicitly resolved. We consider the problem of estimating the spatial distribution of the inclusion proportion, F(x), and a characteristic length-scale of the inclusions, δ, from sparse multiscale measurements. The observations consist of coarse-scale (of the order of the domain size) measurements of the effective permeability of the medium (i.e., static data) and tracer breakthrough times (i.e., dynamic data), which interrogate the fine scale, at a sparsely distributed set of locations. This ill-posed problem is regularized by specifying a Gaussian process model for the unknown field F(x) and expressing it as a superposition of Karhunen–Loève modes. The effect of the fine-scale structures on the coarse-scale effective permeability i.e., upscaling, is performed using a subgrid-model which includes δ as one of its parameters. A statistical inverse problem is posed to infer the weights of the Karhunen–Loève modes and δ, which is then solved using an adaptive Markov Chain Monte Carlo method. The solution yields non-parametric distributions for the objects of interest, thus providing most probable estimates and uncertainty bounds on latent structures at coarse and fine scales. The technique is tested using synthetic data. The individual contributions of the static and dynamic data to the inference are also analyzed.United States. Dept. of Energy. National Nuclear Security Administration (Contract DE-AC04_94AL85000

    Tomography of the Quark Gluon Plasma by Heavy Quarks

    Full text link
    Using the recently published model \cite{Gossiaux:2008jv,goss2} for the collisional energy loss of heavy quarks in a Quark Gluon Plasma (QGP), based on perturbative QCD (pQCD), we study the centrality dependence of RAAR_{AA} and RAA(pTmin)R_{AA}(p_T^{min}), %= \frac{dN_{AA}/dp_T}{ dN_{pp}/dp_T}$ measured by the Phenix collaboration, and compare our model with other approaches based on pQCD and on Anti de Sitter/ Conformal Field Theory (AdS/CFT)Comment: proceedings for SQM0

    Measuring Active-Sterile Neutrino Oscillations with a Stopped Pion Neutrino Source

    Full text link
    The question of the existence of light sterile neutrinos is of great interest in many areas of particle physics, astrophysics, and cosmology. Furthermore, should the MiniBooNE experiment at Fermilab confirm the LSND oscillation signal, then new measurements are required to identify the mechanism responsible for these oscillations. Possibilities include sterile neutrinos, CP or CPT violation, variable mass neutrinos, Lorentz violation, and extra dimensions. In this paper, we consider an experiment at a stopped pion neutrino source to determine if active-sterile neutrino oscillations with delta-m greater than 0.1 eV2 can account for the signal. By exploiting stopped pi+ decay to produce a monoenergetic nu_mu source, and measuring the rate of the neutral current reaction nu_x + 12C -> nu_x +12C* as a function of distance from the source, we show that a convincing test for active-sterile neutrino oscillations can be performed.Comment: 10 pages, 9 figure

    Model selection in High-Dimensions: A Quadratic-risk based approach

    Full text link
    In this article we propose a general class of risk measures which can be used for data based evaluation of parametric models. The loss function is defined as generalized quadratic distance between the true density and the proposed model. These distances are characterized by a simple quadratic form structure that is adaptable through the choice of a nonnegative definite kernel and a bandwidth parameter. Using asymptotic results for the quadratic distances we build a quick-to-compute approximation for the risk function. Its derivation is analogous to the Akaike Information Criterion (AIC), but unlike AIC, the quadratic risk is a global comparison tool. The method does not require resampling, a great advantage when point estimators are expensive to compute. The method is illustrated using the problem of selecting the number of components in a mixture model, where it is shown that, by using an appropriate kernel, the method is computationally straightforward in arbitrarily high data dimensions. In this same context it is shown that the method has some clear advantages over AIC and BIC.Comment: Updated with reviewer suggestion

    The long-term evolution of the spin, pulse shape, and orbit of the accretion-powered millisecond pulsar SAX J1808.4-3658

    Full text link
    We present a 7 yr timing study of the 2.5 ms X-ray pulsar SAX J1808.4-3658, an X-ray transient with a recurrence time of ~2 yr, using data from the Rossi X-ray Timing Explorer covering 4 transient outbursts (1998-2005). We verify that the 401 Hz pulsation traces the spin frequency fundamental and not a harmonic. Substantial pulse shape variability, both stochastic and systematic, was observed during each outburst. Analysis of the systematic pulse shape changes suggests that, as an outburst dims, the X-ray "hot spot" on the pulsar surface drifts longitudinally and a second hot spot may appear. The overall pulse shape variability limits the ability to measure spin frequency evolution within a given X-ray outburst (and calls previous nudot measurements of this source into question), with typical upper limits of |nudot| < 2.5x10^{-14} Hz/s (2 sigma). However, combining data from all the outbursts shows with high (6 sigma) significance that the pulsar is undergoing long-term spin down at a rate nudot = (-5.6+/-2.0)x10^{-16} Hz/s, with most of the spin evolution occurring during X-ray quiescence. We discuss the possible contributions of magnetic propeller torques, magnetic dipole radiation, and gravitational radiation to the measured spin down, setting an upper limit of B < 1.5x10^8 G for the pulsar's surface dipole magnetic field and and Q/I < 5x10^{-9} for the fractional mass quadrupole moment. We also measured an orbital period derivative of Pdot = (3.5+/-0.2)x10^{-12} s/s. This surprising large Pdot is reminiscent of the large and quasi-cyclic orbital period variation observed in the so-called "black widow" millisecond radio pulsars, supporting speculation that SAX J1808.4-3658 may turn on as a radio pulsar during quiescence. In an appendix we derive an improved (0.15 arcsec) source position from optical data.Comment: 22 pages, 10 figures; accepted for publication in Ap

    Simultaneous X-ray and Radio Monitoring of the Unusual Binary LSI+61 303: Measurements of the Lightcurve and High-Energy Spectrum

    Get PDF
    The binary system, LSI+61 303, is unusual both because of the dramatic, periodic, radio outbursts, and because of its possible association with the 100 MeV gamma-ray source, 2CG135+01. We have performed simultaneous radio and Rossi X-ray Timing Explorer X-ray observations at eleven intervals over the 26.5 day orbit, and in addition searched for variability on timescales ranging from milliseconds to hours. We confirm the modulation of the X-ray emission on orbital timescales originally reported by Taylor et al. (1996), and in addition we find a significant offset between the peak of the X-ray and radio flux. We argue that based on these results, the most likely X-ray emission mechanism is inverse Compton scattering of stellar photons off of electrons accelerated at the shock boundary between the relativistic wind of a young pulsar and the Be star wind. In these observations we also detected 2 -- 150 keV flux from the nearby low-redshift quasar QSO~0241+622. Comparing these measurements to previous hard X-ray and gamma-ray observations of the region containing both LSI+61 303 and QSO~0241+622, it is clear that emission from the QSO dominates.Comment: 23 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    Clustering between high-mass X-ray binaries and OB associations in the Milky Way

    Full text link
    We present the first direct measurement of the spatial cross-correlation function of high-mass X-ray binaries (HMXBs) and active OB star-forming complexes in the Milky Way. This result relied on a sample containing 79 hard X-ray selected HMXBs and 458 OB associations. Clustering between the two populations is detected with a significance above 7-sigmas for distances < 1 kpc. Thus, HMXBs closely trace the underlying distribution of the massive star-forming regions that are expected to produce the progenitor stars of HMXBs. The average offset of 0.4+-0.2 kpc between HMXBs and OB associations is consistent with being due to natal kicks at velocities of the order of 100+-50 km/s. The characteristic scale of the correlation function suggests an average kinematical age (since the supernova phase) of ~4 Myr for the HMXB population. Despite being derived from a global view of our Galaxy, these signatures of HMXB evolution are consistent with theoretical expectations as well as observations of individual objects.Comment: 18 pages, 10 figures, 3 tables, accepted for publication in Ap
    • …
    corecore