288 research outputs found

    Potent cytotoxic effects of Calomeria amaranthoides on ovarian cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian cancer remains the leading cause of death from gynaecological malignancy. More than 60% of the patients are presenting the disease in stage III or IV. In spite of combination of chemotherapy and surgery the prognosis stays poor for therapy regimen.</p> <p>Methods</p> <p>The leaves of a plant endemic to Australia, <it>Calomeria amaranthoides</it>, were extracted and then fractionated by column chromatography. <it>In vitro </it>cytotoxicity tests were performed with fractions of the plant extract and later with an isolated compound on ovarian cancer cell lines, as well as normal fibroblasts at concentrations of 1-100 μg/mL (crude extract) and 1-10 μg/mL (compound). Cytotoxicity was measured after 24, 48 and 72 hours by using a non-fluorescent substrate, Alamar blue.</p> <p><it>In vivo </it>cytotoxicity was tested on ascites, developed in the abdomen of nude mice after inoculation with human OVCAR<sub>3 </sub>cells intraperitoneally. The rate of change in abdomen size for the mice was determined by linear regression and statistically evaluated for significance by the unpaired t test.</p> <p>Results</p> <p>Two compounds were isolated by chromatographic fractionation and identified by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and mass spectrometry analyses, EPD, an α-methylene sesquiterpene lactone of the eremophilanolide subtype, and EPA, an α-methylene carboxylic acid.</p> <p>Cytotoxicity of EPD for normal fibroblasts at all time points IC<sub>50 </sub>was greater than 10 μg/mL, whereas, for OVCAR<sub>3 </sub>cells at 48 hours IC<sub>50 </sub>was 5.3 μg/mL (95% confidence interval 4.3 to 6.5 μg/mL).</p> <p>Both, the crude plant extract as well as EPD killed the cancer cells at a final concentration of 10 μg/mL and 5 μg/mL respectively, while in normal cells only 20% cell killing effect was observed. EPA had no cytotoxic effects.</p> <p>Changes in abdomen size for control versus Cisplatin treated mice were significantly different, P = 0.023, as were control versus EPD treated mice, P = 0.025, whereas, EPD versus Cisplatin treated mice were not significantly different, P = 0.13.</p> <p>Conclusions</p> <p>For the first time both crude plant extract from <it>Calomeria amaranthoides </it>and EPD have been shown to have potent anti-cancer effects against ovarian cancer.</p

    Peribiliary glands are key in regeneration of the human biliary epithelium after severe bile duct injury

    Get PDF
    Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We, therefore, developed a novel ex vivo model using precision-cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Post-ischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation and maturation. Proliferation of PBG cells increased after 24 h of oxygenated incubation, reaching a peak after 72 h. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (Nanog+/Sox9+) to a mature (CFTR+/secretin receptor+) and activated phenotype (increased expression of HIF-1α, Glut-1, and VEGF-A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. CONCLUSION: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behaviour of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury. This article is protected by copyright. All rights reserved

    Joubert syndrome: genotyping a Northern European patient cohort

    No full text
    Joubert syndrome (JBS) is a rare neurodevelopmental disorder belonging to the group of ciliary diseases. JBS is genetically heterogeneous, with >20 causative genes identified to date. A molecular diagnosis of JBS is essential for prediction of disease progression and genetic counseling. We developed a targeted next-generation sequencing (NGS) approach for parallel sequencing of 22 known JBS genes plus 599 additional ciliary genes. This method was used to genotype a cohort of 51 well-phenotyped Northern European JBS cases (in some of the cases, Sanger sequencing of individual JBS genes had been performed previously). Altogether, 21 of the 51 cases (41%) harbored biallelic pathogenic mutations in known JBS genes, including 14 mutations not previously described. Mutations in C5orf42 (12%), TMEM67 (10%), and AHI1 (8%) were the most prevalent. C5orf42 mutations result in a purely neurological Joubert phenotype, in one case associated with postaxial polydactyly. Our study represents a population-based cohort of JBS patients not enriched for consanguinity, providing insight into the relative importance of the different JBS genes in a Northern European population. Mutations in C5orf42 are relatively frequent (possibly due to a Dutch founder mutation) and mutations in CEP290 are underrepresented compared with international cohorts. Furthermore, we report a case with heterozygous mutations in CC2D2A and B9D1, a gene associated with the more severe Meckel–Gruber syndrome that was recently published as a potential new JBS gene, and discuss the significance of this finding

    The Oxysterol Synthesising Enzyme CH25H Contributes to the Development of Intestinal Fibrosis

    Get PDF
    Intestinal fibrosis and stenosis are common complications of Crohn's disease [CD], frequently requiring surgery. Anti-inflammatory strategies can only partially prevent fibrosis; hence, anti-fibrotic therapies remain an unmet clinical need. Oxysterols are oxidised cholesterol derivatives with important roles in various biological processes. The enzyme cholesterol 25-hydroxylase [CH25H] converts cholesterol to 25-hydroxycholesterol [25-HC], which modulates immune responses and oxidative stress. In human intestinal samples from CD patients, we found a strong correlation of CH25H mRNA expression with the expression of fibrosis markers. We demonstrate reduced intestinal fibrosis in mice deficient for the CH25H enzyme, using the sodium dextran sulphate [DSS]-induced chronic colitis model. Additionally, using a heterotopic transplantation model of intestinal fibrosis, we demonstrate reduced collagen deposition and lower concentrations of hydroxyproline in CH25H knockouts. In the heterotopic transplant model, CH25H was expressed in fibroblasts. Taken together, our findings indicate an involvement of oxysterol synthesis in the pathogenesis of intestinal fibrosis

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Integrated Epigenome Profiling of Repressive Histone Modifications, DNA Methylation and Gene Expression in Normal and Malignant Urothelial Cells

    Get PDF
    Epigenetic regulation of gene expression is commonly altered in human cancer. We have observed alterations of DNA methylation and microRNA expression that reflect the biology of bladder cancer. This common disease arises by distinct pathways with low and high-grade differentiation. We hypothesized that epigenetic gene regulation reflects an interaction between histone and DNA modifications, and differences between normal and malignant urothelial cells represent carcinogenic events within bladder cancer. To test this we profiled two repressive histone modifications (H3K9m3 and H3K27m3) using ChIP-Seq, cytosine methylation using MeDIP and mRNA expression in normal and malignant urothelial cell lines. In genes with low expression we identified H3K27m3 and DNA methylation each in 20–30% of genes and both marks in 5% of genes. H3K9m3 was detected in 5–10% of genes but was not associated with overall expression. DNA methylation was more closely related to gene expression in malignant than normal cells. H3K27m3 was the epigenetic mark most specifically correlated to gene silencing. Our data suggest that urothelial carcinogenesis is accompanied by a loss of control of both DNA methylation and H3k27 methylation. From our observations we identified a panel of genes with cancer specific-epigenetic mediated aberrant expression including those with reported carcinogenic functions and members potentially mediating a positive epigenetic feedback loop. Pathway enrichment analysis revealed genes marked by H3K9m3 were involved with cell homeostasis, those marked by H3K27m3 mediated pro-carcinogenic processes and those marked with cytosine methylation were mixed in function. In 150 normal and malignant urothelial samples, our gene panel correctly estimated expression in 65% of its members. Hierarchical clustering revealed that this gene panel stratified samples according to the presence and phenotype of bladder cancer

    LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition

    Get PDF
    LKB1/STK11 is a multitasking tumour suppressor kinase. Germline inactivating mutations of the gene are responsible for the Peutz-Jeghers hereditary cancer syndrome. It is also somatically inactivated in approximately 30% of non-small-cell lung cancer (NSCLC). Here, we report that LKB1/KRAS mutant NSCLC cell lines are sensitive to the MEK inhibitor CI-1040 shown by a dose-dependent reduction in proliferation rate, whereas LKB1 and KRAS mutations alone do not confer similar sensitivity. We show that this subset of NSCLC is also sensitised to the mTOR inhibitor rapamycin. Importantly, the data suggest that LKB1/KRAS mutant NSCLCs are a genetically and functionally distinct subset and further suggest that this subset of lung cancers might afford an opportunity for exploitation of anti-MAPK/mTOR-targeted therapies

    Heterochromatin protein 1 is recruited to various types of DNA damage

    Get PDF
    Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-α, HP1-β, and HP1-γ are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independent of H3K9 trimethylation and proteins that detect UV damage and DSBs. Loss of HP1 results in high sensitivity to UV light and ionizing radiation in the nematode Caenorhabditis elegans, indicating that HP1 proteins are essential components of DNA damage response (DDR) systems. Analysis of single and double HP1 mutants in nematodes suggests that HP1 homologues have both unique and overlapping functions in the DDR. Our results show that HP1 proteins are important for DNA repair and may function to reorganize chromatin in response to damage
    corecore