26,611 research outputs found

    Quantitative Description of Strong-Coupling of Quantum Dots in Microcavities

    Full text link
    We have recently developed a self-consistent theory of Strong-Coupling in the presence of an incoherent pumping [arXiv:0807.3194] and shown how it could reproduce quantitatively the experimental data [PRL 101, 083601 (2008)]. Here, we summarize our main results, provide the detailed analysis of the fitting of the experiment and discuss how the field should now evolve beyond merely qualitative expectations, that could well be erroneous even when they seem to be firmly established.Comment: Submitted to the AIP Conference Proceedings Series for the ICPS 2008 (Rio de Janeiro). 2 pages, reduced-quality figur

    Acousto-optic tunable filters (AOTFs) optimised for operation in the 2-4μm region

    Get PDF
    Acousto-Optic Tunable Filters (AOTFs) are electronically-controlled bandpass optical filters. They are often preferred in applications in spectroscopy where their agility and rapid random-access tuning can be deployed to advantage. When used for spectral imaging a large aperture (typically 10mm or more) is desired in order to permit sufficient optical throughput. However, in the mid IR the λ2 dependence on RF drive power combined with the large aperture can prove to be a hurdle, often making them impractical for many applications beyond about 2μm. We describe and compare a series of specialised free-space configurations of AOTF made from single crystal tellurium dioxide, that require relatively low RF drive power. We report on AOTFs specifically optimised for operation with a new generation of Supercontinuum source operating in the 2-4μm window and show how these may be used in a spectral imaging system. Finally, we describe an AOTF with an (acoustic) Fabry-Perot cavity operating at acoustic resonance rather than the conventional travelling-wave mode; the acoustic power requirement therefore being reduced. We present an analysis of the predicted performance. In addition, we address the practical issues in deploying such a scheme and outline the design of a prototype "resonant AOTF" operating in the 1-2μm region

    Charge Breaking Minima in the Broken R-parity Minimal Supersymmetric Standard Model

    Get PDF
    We reconsider the possible presence of charge and colour breaking minima in the scalar potential of the minimal supersymmetric standard model (MSSM) and its minimal generalization with R-parity explicitly broken by bilinear terms (RMSSM). First we generalize some results previously derived for the MSSM case. Next we investigate how robust is the MSSM against its RMSSM extension. We examine the constraints on the RMSSM parameter space that follow from the required absence of charge breaking minima in the scalar potential. We point out the possibility of generating non--zero vacuum expectation values for the charged Higgs field which is not present in the MSSM. However, given the smallness of neutrino masses indicated by neutrino oscillation data, we show that the RMSSM represents only a slight perturbation of the MSSM and is thus as safe (or unsafe) as the MSSM itself from unwanted minima in the scalar potential.Comment: Latex 16 pages, 2 figure

    SINGLE PHOTON DECAYS OF THE Z0Z^0 AND SUSY WITH SPONTANEOUSLY BROKEN R-PARITY

    Get PDF
    Spontaneous violation of R parity can induce rare single photon decays of the Z0Z^0 involving the emission of (nearly) massless pseudoscalar Goldstone bosons, majorons, as well as massive CP even or CP odd spin zero bosons that arise in the electroweak breaking sector of these models. We show that the majoron emitting decays can have a sizeable branching ratio of 10510^{-5} or so, without conflicting any experimental observation from neutrino physics or particle searches. These decays may lead to interesting structures for the single photon spectrum involving either mono chromatic photons as well as continuous spectra that grow with energy. They would easily account for an excess of single photon events at high energies recently hinted at by the OPAL collaboration.Comment: 13 pages, latex file, figures not included but available by fax upon reques

    Global three-neutrino oscillation analysis of neutrino data

    Get PDF
    A global analysis of the solar, atmospheric and reactor neutrino data is presented in terms of three-neutrino oscillations. We include the most recent solar neutrino rates of Homestake, SAGE, GALLEX and GNO, as well as the recent 1117 day Super-Kamiokande data sample, including the recoil electron energy spectrum both for day and night periods and we treat in a unified way the full parameter space for oscillations, correctly accounting for the transition from the matter enhanced (MSW) to the vacuum oscillations regime. Likewise, we include in our description conversions with θ12>π/4\theta_{12} > \pi/4. For the atmospheric data we perform our analysis of the contained events and the upward-going ν\nu-induced muon fluxes, including the previous data samples of Frejus, IMB, Nusex, and Kamioka experiments as well as the full 71 kton-yr (1144 days) Super-Kamiokande data set, the recent 5.1 kton-yr contained events of Soudan2 and the results on upgoing muons from the MACRO detector. We first present the allowed regions of solar and atmospheric oscillation parameters θ12\theta_{12}, Δm212\Delta m^2_{21} and θ23\theta_{23}, Δm322\Delta m^2_{32}, respectively, as a function of θ13\theta_{13} and determine the constraints from atmospheric and solar data on the mixing angle θ13\theta_{13}, common to solar and atmospheric analyses. We also obtain the allowed ranges of parameters from the full five-dimensional combined analysis of the solar, atmospheric and reactor data.Comment: 56 pages, 21 postscript figures. Some misprints corrected and new references added. Chooz limit included in Fig.21. Final version to appear in Phys. Rev.

    Three-family left-right symmetry with low-scale seesaw mechanism

    Full text link
    We suggest a new left-right symmetric model implementing a low-scale seesaw mechanism in which quantum consistency requires three families of fermions. The symmetry breaking route to the Standard Model determines the profile of the "next" expected new physics, characterized either by the simplest left-right gauge symmetry or by the 3-3-1 scenario. The resulting ZZ^\prime gauge bosons can be probed at the LHC and provide a production portal for the right-handed neutrinos. On the other hand, its flavor changing interactions would affect the K, D and B neutral meson systems.Comment: 10 pages, 2 figures. Revised version as accepted by JHE

    Novel Supersymmetric SO(10) Seesaw Mechanism

    Get PDF
    We propose a new seesaw mechanism for neutrino masses within a class of supersymmetric SO(10) models with broken D-parity. It is shown that in such scenarios the B-L scale can be as low as TeV without generating inconsistencies with gauge coupling unification nor with the required magnitude of the light neutrino masses. This leads to a possibly light new neutral gauge boson as well as relatively light quasi-Dirac heavy leptons. These particles could be at the TeV scale and mediate lepton flavour and CP violating processes at appreciable levels.Comment: 4 pages, 3 figures, revtex4, references added, typos corrected, sharper discussion of the RGEs give

    Non-Gaussian Geostatistical Modeling using (skew) t Processes

    Get PDF
    We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with tt marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew-Gaussian process, thus obtaining a process with skew-t marginal distributions. For the proposed (skew) tt process we study the second-order and geometrical properties and in the tt case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the tt process. Moreover we compare the performance of the optimal linear predictor of the tt process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australi
    corecore