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Abstract
We propose a new model for regression and depen-
dence analysis when addressing spatial data with pos-
sibly heavy tails and an asymmetric marginal distri-
bution. We first propose a stationary process with t
marginals obtained through scale mixing of a Gaus-
sian process with an inverse square root process with
Gamma marginals. We then generalize this construction
by considering a skew-Gaussian process, thus obtain-
ing a process with skew-t marginal distributions. For the
proposed (skew) t process, we study the second-order
and geometrical properties and in the t case, we provide
analytic expressions for the bivariate distribution. In an
extensive simulation study, we investigate the use of the
weighted pairwise likelihood as a method of estimation
for the t process. Moreover we compare the performance
of the optimal linear predictor of the t process versus the
optimal Gaussian predictor. Finally, the effectiveness of
our methodology is illustrated by analyzing a georefer-
enced dataset on maximum temperatures in Australia.
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1 INTRODUCTION

The geostatistical approach models data coming from a limited number of monitoring stations as
a partial realization from a spatial stochastic process (or random field) defined on the continuum
space. Gaussian stochastic processes are among the most popular tools for analyzing spatial data
because a mean structure and a valid covariance function completely characterized the associated
finite dimensional distribution. In addition, optimal prediction at an unobserved site depends
on the knowledge of the covariance function of the process. Unfortunately, in many geostatisti-
cal applications, including climatology, oceanography, the environment, and the study of natural
resources, the Gaussian framework is unrealistic because the observed data have specific features
such as negative or positive asymmetry and/or heavy tails.

The focus of this work is on non-Gaussian models for stochastic processes that vary contin-
uously in the euclidean space, even if the proposed methodology can be easily extended to the
space-time framework or to the spherical space. In particular, we aim to accommodate heavier
tails than the ones induced by Gaussian processes and wish to allow possible asymmetry. In recent
years, different approaches have been proposed in order to analyze these kind of data. Trans-
formation of Gaussian (trans-Gaussian) processes is a general method to model non-Gaussian
spatial data obtained by applying some nonlinear transformations to the original data (Allcroft
& Glasbey, 2003; De Oliveira, 2006; De Oliveira, Kedem, & Short, 1997). Then statistical analyses
can be carried out on the transformed data using any techniques available for Gaussian processes.
However, it can be difficult to find an adequate nonlinear transformation and some appealing
properties of the latent Gaussian process may not be inherited by the transformed process. A flex-
ible trans-Gaussian process based on the Tukey g − h distribution has been proposed in Xua and
Genton (2017).

Wallin and Bolin (2015) proposed non-Gaussian processes derived from stochastic partial dif-
ferential equations to model non-Gaussian spatial data. However, this approach is restricted to
the Matérn covariance model with integer smoothness parameter and its statistical properties are
much less understood than those of the Gaussian process.

The copula framework (Joe, 2014) has been adapted in the spatial context in order to account
for possible deviations from the Gaussian distribution. Even though which copula model to use
for a given analysis is not generally known a priori, the copula based on the multivariate Gaussian
distribution has gained a general consensus (Gräler, 2014; Kazianka & Pilz, 2010; Masarotto &
Varin, 2012) since the definition of the multivariate dependence relies again on the specification
of the correlation function. However, Gaussian copula could be too restrictive in some cases since
it expresses a symmetrical and elliptical dependence.

Convolution of Gaussian and non-Gaussian processes is an appealing strategy for mod-
eling spatial data with skewness. For instance, Zhang and El-Shaarawi (2010) proposed a
Gaussian-Half Gaussian convolution in order to construct a process with marginal distributions
of the skew-Gaussian type (Azzalini & Capitanio, 2014). Zareifard, Khaledi, Rivaz, and Vahidi-Asl
(2018) developed bayesian inference for the estimation of a process with asymmetric marginal dis-
tributions obtained through convolution of Gaussian and Log-Gaussian processes. Mahmoudian
(2017) proposed a skew-Gaussian process using the skew-model proposed in Sahu, Dey, and
Márcia (2003). The resulting process is not mean-square continuous and as a consequence it is
not a suitable model for data exhibiting smooth behavior of the realization.

On the other hand, mixing of Gaussian and non-Gaussian processes is a useful strategy for
modeling spatial data with heavy tails. For instance, Palacios and Steel (2006) and Zareifard
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and Khaledi (2013) proposed a (skew) Gaussian-Log-Gaussian scale mixing approach in order to
accommodate the presence of possible outliers for spatial data.

The t distribution is a parametric model that is able to accommodate flexible tail behavior,
thus providing robust estimates against extreme data and it has been studied extensively in recent
years (Arellano-Valle & Bolfarine, 1995; Arellano-Valle, Castro, & Gonzalez-Farias, 2012; Ferrari
& Arellano-Valle, 1996; Fonseca, Ferreira, & Migon, 2008; Lange, Little, & Taylor, 1989). Stochas-
tic processes with marginal t distributions have been introduced in Røislien and Omre (2006),
Ma (2009, 2010), and DeBastiani, Cysneiros, Uribe-Opazo, and Galea (2015), but as outlined in
Genton and Zhang (2012), these models are not be identifiable when only a single realization is
available (which is typically the case for spatial data).

In this article, we propose a process with marginal t distributions obtained though scale mix-
ing of a standard Gaussian process with an inverse square root process with Gamma marginals.
The latter is obtained through a rescaled sum of independent copies of a standard squared
Gaussian process. Although this can be viewed as a natural way to define a t process, the associ-
ated second-order, geometrical properties and bivariate distribution are somewhat unknown to
the best of our knowledge. Some results can be found in Heyde and Leonenko (2005) and Finlay
and Seneta (2006). We study the second-order and geometrical properties of the t process and we
provide analytic expressions for the correlation and the bivariate distribution. It turns out that
both depend on special functions, particularly the Gauss hypergeometric and Appell function
of the fourth type (Gradshteyn & Ryzhik, 2007). In addition, the bivariate distribution is not of
elliptical type.

We then focus on processes with asymmetric marginal distributions and heavy tails. We
first review the skew Gaussian process proposed in Zhang and El-Shaarawi (2010). For this
process, we provide an explicit expression of the finite dimensional distribution generalizing
previous results in Alegría, Caro, Bevilacqua, Porcu, and Clarke (2017). We then propose a
process with marginal distribution of the skew-t type (Azzalini & Capitanio, 2014) obtained
through scale mixing of a skew-Gaussian with an inverse square root process with Gamma
marginals.

Our proposals for the t and skew-t processes have two main features. First, they allow removal
of any problem of identifiability (Genton & Zhang, 2012), and as a consequence, all the parameters
can be estimated using one realization of the process. Second, the t and skew-t processes inherit
some of the geometrical properties of the underlying Gaussian process. This implies that the
mean-square continuity and differentiability of the t and skew-t processes can be modeled using
suitable parametric correlation models as the Matérn model (Matèrn, 1986) or the Generalized
Wendland model (Bevilacqua, Faouzi, Furrer, & Porcu, 2019; Gneiting, 2002).

For the t process estimation, we propose the method of weighted pairwise likelihood
(Bevilacqua & Gaetan, 2015; Lindsay, 1988; Varin, Reid, & Firth, 2011) exploiting the bivariate
distribution given in Theorem 3. In an extensive simulation study, we investigate the perfor-
mance of the weighted pairwise likelihood (wpl) method under different scenarios including
when the degrees of freedom are supposed to be unknown. We also study the performance of the
wpl estimation by assuming a Gaussian process in the estimation step with correlation function
equal to the correlation function of the t process. It turns out that the Gaussian misspecified wpl
(see Gouriéroux, Monfort, & Renault, 2017 with the references therein) leads to a less efficient
estimator, as expected. However, the method has some computational benefits.

In addition, we compare the performance of the optimal linear predictor of the t process with
the optimal predictor of the Gaussian process. Finally, we apply the proposed methodology by
analyzing a real dataset of maximum temperature in Australia where, in this case, we consider a
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t process defined on a portion of the sphere (used as an approximation of the planet Earth) and
use a correlation model depending on the great-circle distance (Gneiting, 2013).

The methodology considered in this article is implemented in the R package
GeoModels (Bevilacqua & Morales-Oñate, 2018). The remainder of the article is organized
as follows. In Section 2, we introduce the t process, study the second-order and geometrical
properties, and provide an analytic expression for the bivariate distribution. In Section 3, we
first study the finite dimensional distribution of the skew Gaussian process, and then we study
the second-order properties of the skew-t process. In Section 4, we present a simulation study
in order to investigate the performance of the (misspecified) wpl method when estimating
the t process and the performance of the associated optimal linear predictor versus the opti-
mal Gaussian predictor. In Section 5, we analyze a real dataset of maximum temperature in
Australia. Finally, in Section 6, we give some conclusions. All the proofs have been deferred to
the Appendix.

2 A STOCHASTIC PROCESS WITH T MARGINAL
DISTRIBUTION

For the rest of the article, given a process Q = {Q(s), s ∈ A} with E(Q(s)) = 𝜇(s) and Var(Q(s)) =
𝜎2, we denote by 𝜌Q(h) = Corr(Q(si),Q(sj)) its correlation function, where h = si − sj is the lag sep-
aration vector. For any set of distinct points (s1,… , sn)T , n ∈  , we denote by Qij = (Q(si),Q(sj))T ,
i ≠ j, the bivariate random vector and by Q = (Q(s1),… ,Q(sn))T , the multivariate random vec-
tor. Moreover, we denote with fQ(s) and FQ(s), the marginal probability density function (pdf) and
cumulative distribution function (cdf) of Q(s), respectively, with fQij the pdf of Qij and with fQ
the pdf of Q. Finally, we denote with Q∗, the standardized weakly stationary process, that is,
Q∗(s) ∶= (Q(s) − 𝜇(s))∕𝜎.

As outlined in Palacios and Steel (2006), given a positive process M = {M(s), s ∈ A} and an
independent standard Gaussian process G∗ = {G∗(s), s ∈ A}, a general class of non-Gaussian
processes with marginal heavy tails can be obtained as scale mixture of G∗, that is, 𝜇(s) +
𝜎M(s)−

1
2 G∗(s), where 𝜇(s) is the location-dependent mean and 𝜎 > 0 is a scale parameter. A

typical parametric specification for the mean is given by 𝜇(s) = X(s)T𝜷, where X(s) ∈ Rk is a vec-
tor of covariates and 𝜷 ∈ Rk but other types of parametric or nonparametric functions can be
considered.

Henceforth, we call G∗ the “parent” process and with some abuse of notation we set 𝜌(h) ∶=
𝜌G∗ (h) and G ∶= G∗. Our proposal considers a mixing process W𝜈 = {W𝜈(s), s ∈ A} with marginal
distribution Γ(𝜈∕2, 𝜈∕2) defined as W𝜈(s) ∶=

∑𝜈
i=1 Gi(s)2∕𝜈, where Gi, i = 1,… 𝜈 are independent

copies of G with E(W𝜈(s)) = 1, Var(W𝜈(s)) = 2∕𝜈 and 𝜌W𝜈
(h) = 𝜌2(h) (Bevilacqua, Caamaño, &

Gaetan, 2018). If we consider a process Y∗
𝜈 = {Y∗

𝜈 (s), s ∈ A} defined as

Y∗
𝜈 (s) ∶= W𝜈(s)−

1
2 G(s), (1)

then, by construction, Y∗
𝜈 has the marginal t distribution with 𝜈 degrees of freedom with pdf given

by:

fY∗
𝜈
(s)(y; 𝜈) =

Γ
(
𝜈+1

2

)
√
𝜋𝜈Γ

(
𝜈

2

)(
1 +

y2

𝜈

)− (𝜈+1)
2

. (2)
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Then, we define the location-scale transformation process Y𝜈 = {Y𝜈(s), s ∈ A} as:

Y𝜈(s) ∶= 𝜇(s) + 𝜎Y∗
𝜈 (s) (3)

with E(Y𝜈(s)) = 𝜇(s) and Var(Y𝜈(s)) = 𝜎2𝜈∕(𝜈 − 2), 𝜈 > 2.

Remark 1. A possible drawback for the Gamma process W𝜈 is that it is a limited model due to
the restrictions to the half-integers for the shape parameter. Actually, in some special cases, it
can assume any positive value greater than zero. This feature is intimately related to the infinite
divisibility of the squared Gaussian process G2 = {G2(s), s ∈ A} as shown in Krishnaiah and Rao
(1961). Characterization of the infinite divisibility of G2 has been studied in Vere-Jones (1997),
Bapat (1989), Griffiths (1970) and Eisenbaum and Kaspi (2006). In particular, Bapat (1989) pro-
vides a characterization based onΩ, the correlation matrix associated with 𝜌(h). Specifically, 𝜈 > 0
if and only if there exists a matrix Sn such that SnΩ−1Sn is an M-matrix (Plemmons, 1977), where
Sn is a signature matrix, that is, a diagonal matrix of size n with entries either 1 or −1. This condi-
tion is satisfied, for instance, by a stationary Gaussian random process G defined on A = R with an
exponential correlation function. The t process Y∗

𝜈 inherits this feature with the additional restric-
tion 𝜈 > 2. This implies that Y∗

𝜈 is well defined for 𝜈 = 3, 4,… and for 𝜈 > 2 under noninfinite
divisibility of G2.

Remark 2. The finite dimensional distribution of Y∗
𝜈 is unknown to the best of our knowledge, but

in principle, it can be derived by mixing the multivariate density associated with W
− 1

2
𝜈 with the

multivariate standard Gaussian density. The multivariate Gamma density fW 𝜈
was first discussed

by Krishnamoorthy and Parthasarathy (1951) and its properties have been studied by different
authors (Marcus, 2014; Royen, 2004). In the bivariate case, Vere-Jones (1967) showed that the
bivariate Gamma distribution is infinite divisible, that is, 𝜈 > 0 in (A2), irrespective of the corre-
lation function. Note that this is consistent with the characterization given in Bapat (1989) since,
given an arbitrary bivariate correlation matrix Ω, there exists a matrix S2 such that S2Ω−1S2 is a
M-matrix. In Theorem 3, we provide the bivariate distribution of Y∗

𝜈 .

Note that, both W𝜈 and G in (3) are obtained through independent copies of the “parent”
Gaussian process with correlation 𝜌(h). For this reason, henceforth, in some cases, we will call
Y∗
𝜈 a standard t process with underlying correlation 𝜌(h).

In what follows, we make use of the Gauss hypergeometric function defined by (Gradshteyn
& Ryzhik, 2007):

2F1(a, b, c; x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!
, (4)

with (s)k =Γ(s + k)∕Γ(s) for k ∈ N ∪ {0} being the Pochhammer symbol and we consider the
restrictions a > 0, b > 0, c > 0, and x ≥ 0. If c > a + b, the radius of convergence of (4) is 0 ≤ x ≤ 1
and, in particular (4) is convergent at x = 1 through the identity:

2F1 (a, b; c; 1) = Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

. (5)

We also consider the Appell hypergeometric function of the fourth type (Gradshteyn & Ryzhik,
2007) defined as:

F4(a, b; c, c′;w, z) =
∞∑

k=0

∞∑
m=0

(a)k+m(b)k+mwkzm

k!m!(c)k(c′)m
, |√w| + |√z| < 1.
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The following theorem gives an analytic expression for 𝜌Y∗
𝜈
(h) in terms of the Gauss hypergeo-

metric function.

Theorem 1. Let Y∗
𝜈 be a standardized t process with underlying correlation 𝜌(h). Then:

𝜌Y∗
𝜈
(h) =

(𝜈 − 2)Γ2
(
𝜈−1

2

)
2Γ2

(
𝜈

2

) [2F1

(1
2
,

1
2
; 𝜈

2
; 𝜌2(h)

)
𝜌(h)]. (6)

The following theorem depicts some features of the t process. It turns out that nice properties
such as stationarity, mean-square continuity, and degrees of mean-square differentiability can be
inherited from the “parent” Gaussian process G. Furthermore, the t process has long-range depen-
dence when the “parent” Gaussian process has long-range dependence and this can be achieved
when the correlation has some specific features. For instance, the generalized Cauchy (Gneiting
& Schlather, 2004; Lim & Teo, 2009) and Dagum (Berg, Mateu, & Porcu, 2008) correlation models
can lead to a Gaussian process with long-range dependence. Finally, an appealing and intuitive
feature is that the correlation of Y∗

𝜈 approaches the correlation of G when 𝜈 → ∞.

Theorem 2. Let Y∗
𝜈 , 𝜈 > 2 be a standardized t process with underlying correlation 𝜌(h). Then:

(a) Y∗
𝜈 is also weakly stationary;

(b) Y∗
𝜈 is mean-square continuous if and only if G is mean-square continuous;

(c) Let G m-times mean-square differentiable, for m = 0, 1,…
• If 𝜈 > 2(2m + 1) then Y∗

𝜈 is m-times mean-square differentiable;
• If 𝜈 ≤ 2(2m + 1) then Y∗

𝜈 is (m − k)-times mean-square differentiable if 2(2(m − k) + 1) <
𝜈 ≤ 2(2(m − k) + 3), for k = 1,… ,m.

(d) Y∗
𝜈 is a long-range-dependent process if and only if G is a long-range-dependent process

(e) 𝜌Y∗
𝜈
(h) ≤ 𝜌(h) and lim

𝜈→∞
𝜌Y∗

𝜈
(h) = 𝜌(h).

One implication of Theorem 2 point (c) is that the process Y∗
𝜈 inherits the mean square differ-

entiability of G under the condition 𝜈 > 2(2m + 1). Otherwise, the mean square differentiability
depends on 𝜈. For instance, if G is one time mean square differentiable, then Y∗

𝜈 can be zero or
one time differentiable depending if 𝜈 > 6 or not.

Remark 3. A simplified version of the t process in Equation (1), can be obtained assuming
W𝜈(si) ⟂ W𝜈(sj), i ≠ j. Under this assumption, Y∗

𝜈 is still a process with t marginal distribution but,
in this case, the geometrical properties are not inherited from the “parent” Gaussian process G.
In particular, it can be shown that the resulting correlation function exhibits a discontinuity at
the origin and, as a consequence, the process is not mean-square continuous. A not mean-square
continuous version of the t process in Equation (1) can be obtained by introducing a nugget effect,
that is, a discontinuity of 𝜌Y∗

𝜈
(h) at the origin. This can be easily achieved by replacing 𝜌(h) in

(6) with 𝜌∗(h) = 1 if h = 0 and 𝜌∗(h) = (1 − 𝜏2)𝜌(h) otherwise, where 0 ≤ 𝜏2 < 1 represents the
underlying nugget effect.

Since the t process inherits some of the geometrical properties of the “parent” Gaussian pro-
cess, the choice of the covariance function is crucial. Two flexible isotropic models that allow
parametrizing in a continuous fashion the mean square differentiability of a Gaussian process
and its sample paths are as follows:
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1. the Matérn correlation function (Matèrn, 1986)

𝛼,𝜓 (h) =
21−𝜓

Γ(𝜓)
(||h||∕𝛼)𝜓𝜓 (||h||∕𝛼) , (7)

where 𝜓 is a modified Bessel function of the second kind of order 𝜓 . Here, 𝛼 > 0 and 𝜓 > 0
guarantee the positive definiteness of the model in any dimension.

2. the Generalized Wendland correlation function (Gneiting, 2002), defined for 𝜓 > 0 as:

𝛼,𝜓,𝛿(h) ∶=

{ ∫ 1||h||∕𝛼 u(u2−(||h||∕𝛼)2)𝜓−1(1−u)𝛿du

B(2𝜓,𝛿+1)
||h|| < 𝛼

0 otherwise
, (8)

and for 𝜓 = 0 as:

𝛼,0,𝛿(h) ∶=
{

(1 − ||h||∕𝛼)𝛿 ||h|| < 𝛼
0 otherwise . (9)

Here B(⋅, ⋅) is the Beta function and 𝛼 > 0, 𝛿 ≥ (d + 1)∕2 + 𝜓 guarantee the positive definite-
ness of the model in Rd.

In particular for a positive integer k, the sample paths of a Gaussian process are k times
differentiable if and only if 𝜓 > k in the Matérn case (Stein, 1999) and if and only if 𝜓 > k −
1∕2 in the Generalized Wendland case (Bevilacqua et al., 2019). In addition, the Generalized
Wendland correlation is compactly supported, an interesting feature from computational point
of view (Furrer, Genton, & Nychka, 2013), which is inherited by the t process since 𝜌(h) = 0
implies 𝜌Y∗

𝜈
(h) = 0.

In order to illustrate some geometric features of the t process, we first compare the cor-
relation functions of the Gaussian and t processes using an underlying Matérn model. In
Figure 1 (left part), we compare 𝜌Y∗

𝜈
(h) when 𝜈 = 3, 7 with the correlation of the “parent”

Gaussian process 𝜌(h) = 1.5,𝛼∗ (h), where 𝛼∗ is chosen such that the practical range is 0.2.
It is apparent that when increasing the degrees of freedom 𝜌Y∗

𝜈
(h) approaches 𝜌(h) and that

the smoothness at the origin of 𝜌Y∗
𝜈
(h) is inherited by the smoothness of the Gaussian cor-

relation 𝜌(h) when 𝜈 = 7 and if 𝜈 = 3 then 𝜌Y∗
𝜈
(h) is not differentiable at the origin. On the

right side of Figure 1, we compare a kernel nonparametric density estimation of a realization
of G and a realization of Y∗

7 (approximately 10 000 location sites in the unit square) using
𝜌(h) = 1.5,𝛼∗ (h).

In Figure 2a,b, we compare, from left to right, two realizations of G with 𝜌(h) = 0.5,𝛼∗ (h) and
𝜌(h) = 1.5,𝛼∗ (h), where 𝛼∗ is chosen such that the practical range is 0.2. In this case, the sample
paths of G are zero and one times differentiable. From the bottom part of Figure 2c,d, it can be
appreciated that this feature is inherited by the associated realizations of Y∗

7 .
We now consider the bivariate random vector associated with Y∗

𝜈 defined by:

Y∗
𝜈;ij = W

− 1
2

𝜈;ij◦Gij,

where ◦ denotes the Schur product vector. The following theorem gives the pdf of Y∗
𝜈;ij in terms

of the Appell function F4. It can be viewed as a generalization of the generalized bivariate
t distribution proposed in Miller (1968).



8 BEVILACQUA et al.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

t with ν=3

t with ν=7

Gaussian

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4 t with ν=7 

Gaussian

F I G U R E 1 Left part: comparison of 𝜌Y∗
𝜈
(h), 𝜈 = 3, 7 with the correlation 𝜌(h) of the “parent” Gaussian

process G when 𝜌(h) = 1.5,𝛼∗ (h) with 𝛼∗ such that the practical range is 0.2. Right part: a comparison of a
nonparametric kernel density estimation of realizations from G and from the t process Y∗

7

−3

−2

−1

0

1

2

3

4

−3

−2

−1

0

1

2

3

−5

0

5

0.0 0.2 0.4

(a) (b)

(c) (d)

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−5

0

5

F I G U R E 2 Upper part: two realizations of the “parent” Gaussian process G on [0, 1]2 with (a)
𝜌(h) = 0.5,𝛼∗ (h) and (b) 𝜌(h) = 1.5,𝛼∗ (h) (from left to right) with 𝛼∗ such that the practical range is
approximatively 0.2. Bottom part: (c) and (d) associated realizations of the t process Y∗

7 [Color figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


BEVILACQUA et al. 9

ρ=0.2, ν=3

 0.001 

 0.001 

 0.001 

 0.001 

 0.002 

 0.0035 

 0.0055 

 0.0085 

 0.011 

 0.017 

 0.023 

 0.038 

 0.05 

 0.075 

 0.11 

−4 −2 420 −4 −2 420

−4 −2 420−4 −2 420

−
4

−
2

0
2

4

−
4

−
2

0
2

4
−

4
−

2
0

2
4

−
4

−
2

0
2

4
ρ=0.9, ν=3

 0.001 

 0.002 

 0.0035 

 0.0055 

 0.0085 

 0.011 

 0.017 

 0.023 
 0.038 

 0.05 

 0.075 

 0.11 

ρ=0.2, ν=9

 0.001 

 0.002 

 0.0035 

 0.0055 

 0.0085 

 0.011 

 0.017 

 0.023 

 0.038 

 0.05 

 0.075 

 0.11 

ρ=0.9, ν=9

 0.001 

 0.002 

 0.0035 

 0.0055 

 0.0085 

 0.011 

 0.017 

 0.023 

 0.038 

 0.05 

 0.075 

 0.11 

F I G U R E 3 Contour plots of the bivariate t distribution (10) when 𝜌(h) = 0.2, 0.9 and 𝜈 = 3, 9 [Color figure
can be viewed at wileyonlinelibrary.com]

Theorem 3. Let Y∗
𝜈 , 𝜈 > 2 be a standard t process with underlying correlation 𝜌(h). Then:

fY∗
𝜈;ij
(yi, yj) =

𝜈𝜈 l
− (𝜈+1)

2
ij Γ2

(
𝜈+1

2

)
𝜋Γ2

(
𝜈

2

)
(1 − 𝜌2(h))−(𝜈+1)∕2

F4

(
𝜈 + 1

2
,
𝜈 + 1

2
,

1
2
,
𝜈

2
;
𝜌2(h)y2

i y2
j

lij
,
𝜈2𝜌2(h)

lij

)

+
𝜌(h)yiyj𝜈

𝜈+2l
− 𝜈

2
−1

ij

2𝜋(1 − 𝜌2(h))−
(𝜈+1)

2

F4

(
𝜈

2
+ 1, 𝜈

2
+ 1, 3

2
,
𝜈

2
;
𝜌2(h)y2

i y2
j

lij
,
𝜈2𝜌2(h)

lij

)
, (10)

where lij = [(y2
i + 𝜈)(y

2
j + 𝜈)].

Remark 4. Note that fY∗
𝜈;ij
(yi, yj) is defined for 𝜈 > 2 irrespectively of the correlation function since

it is obtained from a bivariate Gamma distribution (see Remark 2). Moreover, when 𝜌(h) = 0,
according to (21) and using the identity 2F1(a, b; c′; 0) = 1, we obtain F4(a, b; c, c′; 0, 0) = 1, and as

http://wileyonlinelibrary.com
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a consequence, fY∗
𝜈;ij
(yi, yj) can be written as the product of two independent t random variables

with 𝜈 degrees of freedom. Thus, zero pairwise correlation implies pairwise independence, as in
the Gaussian case. Figure 3 shows the contour plots of (10) when 𝜈 = 3, 9 and 𝜌(h) = 0.2, 0.9. It
turns out that the bivariate t distribution is not elliptical and when increasing 𝜈, the contour plots
tend toward an elliptical form. Finally, the bivariate density of the process Y𝜈 is easily obtained
from (3):

fY 𝜈;ij(yi, yj) =
1
𝜎2 fY∗

𝜈;ij

(yi − 𝜇i

𝜎
,

yj − 𝜇j

𝜎

)
. (11)

3 A STOCHASTIC PROCESS WITH SKEW-T MARGINAL
DISTRIBUTION

In this section, we first review the skew-Gaussian process proposed in Zhang and El-Shaarawi
(2010). For this process, we provide an explicit expression for the finite dimensional distribution
generalizing previous results in Alegría et al. (2017). Then, using this skew-Gaussian process, we
propose a generalization of the t process Y𝜈 obtaining a new process with marginal distribution
of the skew-t type (Azzalini & Capitanio, 2014).

Following Zhang and El-Shaarawi (2010) a general construction for a process with asymmetric
marginal distribution is given by:

U𝜂(s) ∶= g(s) + 𝜂|X1(s)| + 𝜔X2(s), s ∈ A ⊂ R
d (12)

where 𝜂 ∈ R, 𝜔 > 0 and Xi i = 1, 2 are two independents copies of a process X = {X(s), s ∈ A}
with symmetric marginals. The parameters 𝜂 and 𝜔 allow modeling the asymmetry and variance
of the process simultaneously.

Zhang and El-Shaarawi (2010) studied the second-order properties of U𝜂 when X ≡ G. In this
case, U𝜂 has skew Gaussian marginal distributions (Azzalini & Capitanio, 2014) with pdf given
by:

fU𝜂(s)(u) =
2

(𝜂2 + 𝜔2)1∕2𝜙

(
(u − g(s))
(𝜂2 + 𝜔2)1∕2

)
Φ

(
𝜂(u − g(s))
𝜔(𝜂2 + 𝜔2)1∕2

)
(13)

with E(U𝜂(s)) = g(s) + 𝜂(2∕𝜋)1/2, Var(U𝜂(s)) = 𝜔2 + 𝜂2(1 − 2∕𝜋) and with correlation function
given:

𝜌U𝜂
(h) = 2𝜂2

𝜋𝜔2 + 𝜂2(𝜋 − 2)
(
(1 − 𝜌2(h))1∕2 + 𝜌(h) arcsin(𝜌(h)) − 1

)
+ 𝜔2𝜌(h)
𝜔2 + 𝜂2(1 − 2∕𝜋)

. (14)

The following theorem generalizes the results in Alegría et al. (2017) and gives an explicit
closed-form expression for the pdf of the random vector U𝜂 .

Theorem 4. Let U𝜂(s) = g(s) + 𝜂|X1(s)| + 𝜔X2(s) where Xi i = 1, 2 are two independent copies of G
the “parent” Gaussian process. Then:

fU𝜂
(u) = 2

2n−1∑
l=1
𝜙n(u − 𝜶;Al)Φn(cl; 0,Bl) (15)
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where

Al = 𝜔2Ω + 𝜂2Ωl

cl = 𝜂Ωl(𝜔2Ω + 𝜂2Ωl)−1(u − 𝜶)
Bl = Ωl − 𝜂2Ωl(𝜔2Ω + 𝜂2Ωl)−1Ωl

𝜶 = [g(si)]n
i=1

and the Ωl's are correlation matrices that depend on the correlation matrix Ω.

Some comments are in order. First, note that fU can be viewed as a generalization
of the multivariate skew-Gaussian distribution proposed in Azzalini and Dalla-Valle (1996).
Second, using Theorem 4, it can be easily shown that the consistency conditions given in
Mahmoudian (2018) are satisfied. Third, it is apparent that likelihood-based methods for the
skew-Gaussian process are impractical from computational point of view even for a relatively
small dataset.

To obtain a process with skew-t marginal distributions (Azzalini & Capitanio, 2014), we
replace the process G in (3) with the process U𝜂 . Specifically, we consider a process S𝜈,𝜂 =
{S𝜈,𝜂(s), s ∈ A} defined as

S𝜈,𝜂(s) ∶= 𝜇(s) + 𝜎W𝜈(s)−
1
2 U𝜂(s), (16)

where W𝜈 and U𝜂 are supposed to be independent. In (12), we assume g(s) = 0 and 𝜂2 + 𝜔2 = 1.
The pdf of the marginal distribution of S∗

𝜈,𝜂 is given by:

fS∗
𝜈,𝜂
(s)(g) = 2fY∗

𝜈
(s)(g; 𝜈)FY∗

𝜈
(s)

(
𝜂g

√
𝜈 + 1
𝜈 + g2 ; 𝜈 + 1

)
(17)

with E(S∗
𝜈,𝜂(s)) =

√
𝜈Γ

(
𝜈−1

2

)
𝜂√

𝜋Γ
(
𝜈

2

) , and Var(S∗
𝜈,𝜂(s)) =

[
𝜈

𝜈−2
−

𝜈Γ2
(
𝜈−1

2

)
𝜂2

𝜋Γ2
(
𝜈

2

)
]

.

If 𝜂 = 0, (17) reduces to a marginal t density given in (2) and if 𝜈 → ∞, (17) converges to a
skew-normal distribution. Moreover, coupling (6) and (14) the correlation function of the skew-t
process is given by:

𝜌S∗
𝜈,𝜂
(h) = a(𝜈, 𝜂)[2F1

(1
2
,

1
2
; 𝜈

2
; 𝜌2(h)

){
(1 + 𝜂2(1 − 2

𝜋
))𝜌U𝜂

(h) + 2𝜂2

𝜋

}
− 2𝜂2

𝜋
], (18)

where a(𝜈, 𝜂) =
𝜋(𝜈−2)Γ2

(
𝜈−1

2

)
2
[
𝜋Γ2

(
𝜈

2

)
(1+𝜂2)−𝜂2(𝜈−2)Γ2

(
𝜈−1

2

)] . Note that 𝜌S∗
𝜈,𝜂
(h) = 𝜌S∗

𝜈,−𝜂
(h), that is, as in the

skew-Gaussian process U𝜂 , the correlation is invariant with respect to positive or negative asym-
metry and using similar arguments of Theorem 2 point (e), it can be shown that lim

𝜈→∞
𝜌S∗

𝜈,𝜂
(h) =

𝜌U𝜂
(h).
Finally, following the steps of the proof of Theorem 2, it can be shown that properties (a), (b),

(c), and (d) in Theorem 2 are true for the skew-t process S∗
𝜈,𝜂 .

Figure 4, left part, compares 𝜌S∗
7,0.9

(h) and 𝜌S∗
7,0
(h) = 𝜌Y∗

7
(h) with the underlying correlation

𝜌(h) = 0.3,1,5(h). The right part shows a realization of S∗
7,0.9.
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Skew−t with ν=7 ,η=0.9

t with ν=7

Gaussian
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F I G U R E 4 From left to right: (a) comparison between 𝜌S∗
7,0.9

(h), 𝜌S∗
7,0
(h) = 𝜌Y∗

7
(h) and the underlying

correlation 𝜌(h) = 0.3,1,5(h) and (b) a realization from S∗
7,0.9(s) [Color figure can be viewed at

wileyonlinelibrary.com]

4 NUMERICAL EXAMPLES

In this section, we analyze the performance of the wpl method when estimating the t process
assuming 𝜈 known or unknown. Following Remark 1 in Section 2, we consider the cases when
𝜈 > 2 and 𝜈 = 3, 4,…. In the latter case, we give a practical solution for fixing the degrees of
freedom parameter to a positive integer value through a two-step estimation.

We also compare the performance of the wpl using the bivariate t distribution (10) with a
misspecified Gaussian standard and weighted pairwise likelihood. Finally, we compare the per-
formance of the optimal linear predictor of the t process using (6) versus the optimal predictor of
the Gaussian process.

4.1 Weighted pairwise likelihood estimation

Let (y1,… , yn)T be a realization of the t random process Y𝜈 defined in Equation (3) observed at
distinct spatial locations s1,… , sn, si ∈ A and let 𝜽 = (𝜷T , 𝜈, 𝜎2,𝜶T) be the vector of unknown
parameters where 𝜶 is the vector parameter associated with the underlying correlation model.
The method of wpl (Lindsay, 1988; Varin et al., 2011) combines the bivariate distributions of all
possible distinct pairs of observations. The pairwise likelihood function is given by

pl(𝜽) ∶=
n−1∑
i=1

n∑
j=i+1

log(fY 𝜈;ij(yi, yj;𝜽))cij, (19)

where fY 𝜈;ij(yi, yj;𝜽) is the bivariate density in (11) and cij is a nonnegative suitable weight. The
choice of cutoff weights, namely,

cij =

{
1 ||si − sj|| ≤ dij

0 otherwise
, (20)

http://wileyonlinelibrary.com
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for a positive value of dij, can be motivated by its simplicity and by observing that the
dependence between observations that are distant is weak. Therefore, the use of all pairs may
skew the information confined in pairs of near observations (Bevilacqua & Gaetan, 2015; Joe &
Lee, 2009). The maximum wpl estimator is given by

𝜽̂ ∶= arg max
𝜽

pl(𝜽)

and, arguing as in Bevilacqua, Gaetan, Mateu, and Porcu (2012) and Bevilacqua and
Gaetan (2015), under some mixing conditions of the t process, it can be shown that, under
increasing domain asymptotics, 𝜽̂ is consistent and asymptotically Gaussian with the asymp-
totic covariance matrix given by −1

n (𝜽) the inverse of the Godambe information n(𝜽) ∶=n(𝜽)n(𝜽)−1n(𝜽),where n(𝜽) ∶= E[−∇2pl(𝜽)] and n(𝜽) ∶= Var[∇pl(𝜽)]. Standard error esti-
mation can be obtained considering the square root diagonal elements of −1

n (𝜽̂). Moreover, model
selection can be performed by considering two information criterion, defined as

PLIC ∶= −2pl(𝜽̂) + 2tr(n(𝜽̂)−1
n (𝜽̂)), BLIC ∶= −2pl(𝜽̂) + log(n)tr(n(𝜽̂)−1

n (𝜽̂)),

which are composite likelihood version of the Akaike information criterion (AIC) and Bayesian
information criterion (BIC), respectively (Gao & Song, 2010; Varin & Vidoni, 2005). Note that,
the computation of standard errors, PLIC and BLIC require evaluation of the matrices n(𝜽̂) and
n(𝜽̂). However, the evaluation of n(𝜽̂) is computationally unfeasible for large datasets and in
this case subsampling techniques can be used in order to estimate n(𝜽) as in Bevilacqua et al.
(2012) and Heagerty and Lele (1998). A straightforward and more robust alternative is para-
metric bootstrap estimation of −1

n (𝜽) (Bai, Kang, & Song, 2014). We adopt the second strategy
in Section 5.

4.2 Performance of the weighted pairwise likelihood estimation

Following DiCiccio and Monti (2011) and Arellano-Valle and Azzalini (2013), we consider a
reparametrization for the t process by using the inverse of degrees of freedom, 𝜆 = 1∕𝜈. In the
standard i.i.d case, this kind of parametrization has proven effective for solving some problems
associated with the singularity of the Fisher information matrix associated with the original
parametrization. Here we consider two possible scenarios, that is, a t process observed on a subset
of R and R2.

1. We consider points si ∈ A = [0, 1], i = 1,… ,N and an exponential correlation function for the
“parent” Gaussian process. Then, according to Remark 1 in Section 2, the t process is well
defined for 0 < 𝜆 < 1∕2 and in this specific case, all the parameters can be jointly estimated. We
simulate, using Cholesky decomposition, 500 realizations of a t process observed on a regular
transect s1 = 0, s2 = 0.002,… , s501 = 1. We consider two mean regression parameters, that is,
𝜇(si) = 𝛽0 + 𝛽1u(si) with 𝛽0 = 0.5, 𝛽1 = −0.25, where u(si) is a realization from a U(0, 1). Then,
we set 𝜆 = 1∕𝜈, 𝜈 = 3, 6, 9 and 𝜎2 = 1.

As correlation model, we consider 𝜌(h) = 𝛼,0.5(h) = e−|h|∕𝛼 with 𝛼 = 0.1∕3 and in the wpl
estimation, we consider a cutoff weight function with dij = 0.002. Table 1 shows the bias and
mean square error (MSE) associated with 𝜆, 𝛽0, 𝛽1, 𝛼, and 𝜎2.

2. We consider points si ∈ A = [0, 1]2, i = 1,… ,N. Specifically, we simulate, using Cholesky
decomposition, 500 realizations of a t process observed at N = 500 spatial location sites
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T A B L E 1 Bias and MSE when estimating with wpl the t process with 𝜆 = 1∕𝜈, 𝜈 = 3, 6, 9
and exponential correlation function (Scenario 1)

1∕3 1∕6 1∕9

𝝀 Bias MSE Bias MSE Bias MSE
𝜆̂ −0.01022 0.00321 −0.01033 0.00215 −0.00924 0.00172

𝛽0 −0.01466 0.06585 −0.00559 0.06154 0.00028 0.06532

𝛽1 −0.00099 0.00062 −0.00232 0.00049 −0.00193 0.00049

𝛼̂ −0.00213 0.0006 −0.00278 0.0007 −0.00189 0.0008

𝜎̂2 −0.01064 0.07493 −0.05502 0.06902 −0.02677 0.07052

Abbreviation: MSE, mean square error.
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F I G U R E 5 Boxplots of wpl estimates for 𝛽0 = 0.5, 𝛽1 = −0.25, 𝛼 = 0.2, 𝜎2 = 1 (from left to right) under
Scenario 2 when estimating a t process with 𝜆 = 1∕𝜈, 𝜈 = 6 when (1) 𝜈 is assumed known, (2) 𝜈 is assumed
unknown and it is fixed to a positive integer through a two-step estimation

uniformly distributed in the unit square. Regression, variance, and (inverse of) degrees of free-
dom parameters have been set as in the first scenario. As an isotropic parametric correlation
model, 𝜌(h) = 𝛼,0,4(h) with 𝛼 = 0.2 is considered. In the wpl estimation, we consider a cut-
off weight function with dij = 0.05 and for each simulation, we estimate with wpl, assuming
the degrees of freedom are fixed and known.

We also consider the more realistic case when the (inverse of) degrees of freedom are
supposed to be unknown. Recall that from Remark 1, 𝜈 must be fixed to a positive integer
𝜈 = 3, 4,… in order to guarantee the existence of the t process. A brute force approach con-
siders different wpl estimates using a fixed 𝜆 = 1∕𝜈, 𝜈 = 3, 4,…. and then simply keeps the
estimate with the best PLIC or BLIC. We propose a computationally easier approach by consid-
ering a two-step method. In the first step, we estimate all the parameters including 0 < 𝜆 < 1∕2
maximizing the wpl function. This is possible since the bivariate t distribution is well defined
for 0 < 𝜆 < 1∕2 (see Remark 4). In the second step, 𝜈 is fixed equal to the rounded value of
1∕𝜆̂1, where 𝜆̂1 is the estimation at first step. (If at the first step, the estimation of 1∕𝜆̂1 is lower
than 2.5, then it is rounded to 3). Table 2 shows the bias and MSE associated with 𝛽0, 𝛽1, 𝛼,
and 𝜎2 when estimating with wpl, assuming (the inverse of) degrees of freedom (1) known and
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fixed and (2) unknown and fixed using a two-step estimation and Figure 5 shows the boxplots
of the wpl estimates for the case (1) and (2).

As a general comment, the distribution of the estimates are quite symmetric, numerically
stable, and with very few outliers for the three scenarios. In Scenario 1, the MSE of 𝜆 = 1∕𝜈
slightly decreases when increasing 𝜈. Moreover, in Table 2, it can be appreciated that only the
estimation of 𝜎2 is affected when considering a two-step estimation. Specifically, the MSE of 𝜎2

slightly increases with respect to the one-step estimation, that is, when the degrees of freedom
are supposed to be known.

4.3 Performance of the misspecified (pairwise) Gaussian likelihood
estimation

Weighted pairwise likelihood estimation requires the evaluation of the bivariate distribution (10),
that is, the computation of the Appell F4 function. Standard statistical software libraries for the
computation of the F4 function are unavailable to the best of our knowledge. In our implementa-
tion, we exploit the following relation with the Gaussian hypergeometric function (Brychkov &
Saad, 2017):

F4(a, b; c, c′;w, z) =
∞∑

k=0

(a)k(b)kzk

k!(c′)k
2F1(a + k, b + k; c;w), |√w| + |√z| < 1, (21)

truncating the series when the kth generic element of the series is smaller than a fixed
𝜖 and where standard libraries for the computation of the 2F1 function can be used
(Pearson, Olver, & Porter, 2017). Evaluation of the F4 function can be time consuming
depending of the speed of convergence of (21) and, as a consequence, if the number
of location sites is large, the computation of the wpl estimator can be computationally
demanding.

An estimator that require smaller computational burden can be obtained by considering
a misspecified wpl. Specifically, if in the estimation procedure we assume a Gaussian pro-
cess with mean equal to 𝜇(s), variance equal to 𝜎2𝜈∕(𝜈 − 2) and correlation 𝜌Y∗

𝜈
(h), then a

Gaussian wpl only requires the computation of the Gaussian bivariate distribution and of the
Gauss hypergeometric function in (6). Note that the misspecified Gaussian process matches
mean, variance, and correlation function of the t process. To avoid identifiability problems, we
need a reparametrization of the variance, that is, 𝜎2

∗ ∶= 𝜎2𝜈∕(𝜈 − 2). Then, maximization of the
Gaussian wpl function leads to the estimation of 𝜇(s), 𝜎2

∗ , 𝜈 and the parameters of the underlying
correlation model 𝜌(h).

To investigate the performance of this kind of estimator, we consider 676 points on a reg-
ular spatial grid A = [0, 1]2, that is (xi, xj)T for i, j = 1,… , 21 with x1 = 0, x2 = 0.04,… x26 =
1 and we simulate, using Cholesky decomposition, 500 realizations of a t process set-
ting 𝜇(s) = 𝜇 = 0, 𝜎2 = 1, 𝜈 = 3, 6, 9 and underlying correlation function 𝜌(h) = 𝛼,0,4(h)
with 𝛼 = 0.2. Then we estimate the parameters 𝜇, 𝜎2

∗ , 𝛼 (assuming 𝜈 known and fixed)
with wpl using the bivariate t distribution (10) and with both misspecified Gaussian wpl
and standard likelihood. In the wpl estimation, we consider a cutoff weight function
with dij = 0.05.



BEVILACQUA et al. 17

T A B L E 3 Bias and MSE associated with μ, 𝛼, and 𝜎2 for wpl with bivariate t distribution
(WPLT), standard misspecified Gaussian likelihood (LG) and wpl with bivariate misspecified
Gaussian distribution (WPLG) when 𝜆 = 1∕𝜈, 𝜈 = 3, 6, 9

WPLT LG WPLG

𝝀 Parameters Bias MSE Bias MSE Bias MSE
𝜇 0.0045 0.0088 0.0036 0.0154 0.0036 0.0158

𝜆 = 1∕3 𝛼 −0.0016 0.0003 0.0084 0.0009 0.0129 0.0013

𝜎2 −0.0019 0.0102 −0.0577 0.0477 −0.0534 0.0478

𝜇 −0.0057 0.0096 −0.0053 0.0106 −0.0052 0.0110

𝜆 = 1∕6 𝛼 −0.0020 0.0003 −0.0007 0.0003 −0.0014 0.0003

𝜎2 −0.0105 0.0075 −0.0150 0.0095 −0.0168 0.0098

𝜇 −0.0029 0.0091 −0.0038 0.0094 −0.0040 0.0096

𝜆 = 1∕9 𝛼 −0.0019 0.0003 −0.0019 0.0003 −0.0022 0.0003

𝜎2 −0.0075 0.0081 −0.0089 0.0088 −0.0093 0.0088

Abbreviations: LG, standard misspecified Gaussian likelihood; MSE, mean square error; WPLG, weighted
pairwise likelihood with bivariate Gaussian distribution; WPLT , weighted pairwise likelihood with bivariate t
distribution.

Table 3 shows the bias and MSE associated with 𝜇, 𝛼, and 𝜎2 for the three methods of esti-
mation. Note that, for comparison, the results of the variance parameter are reported in terms of
the original parametrization. It is apparent that wpl with bivariate t distribution shows the best
performance. In particular when 𝜆 = 1∕3, the gains in terms of efficiency are considerable. How-
ever, when increasing the degrees of freedom, the gains tends to decrease and when 𝜈 = 9 the
efficiencies of the three estimators are quite similar (see boxplots in Figure 6).

4.4 t optimal linear prediction versus Gaussian optimal prediction

One of the primary goals of geostatistical modeling is to make predictions at spatial locations
without observations. The optimal predictor for the t process, with respect to the mean squared
error criterion, is nonlinear and difficult to evaluate explicitly since it requires the knowledge of
the finite dimensional distribution.

A practical and less efficient solution can be obtained using the optimal linear prediction.
Assuming known mean, correlation, and the degrees of freedom of the t process, the predictor at
an unknown location s0 is given by:

ŷ(s0) = 𝜇(s0) + cT
𝜈 R−1

𝜈 (Y − 𝝁), (22)

where 𝝁 = (𝜇(s1),… , 𝜇(sn))T , c𝜈 = [𝜌Y∗
𝜈
(s0 − sj)]n

i=1, and R𝜈 = [𝜌Y∗
𝜈
(si − sj)]n

i,j=1, and the associated
variance is given by:

Var(ŷ(s0)) = 𝜎2
∗(1 − cT

𝜈 R−1
𝜈 c𝜈). (23)

As an Associate Editor pointed out, this is equivalent to perform optimal Gaussian prediction
with covariance function equal to 𝜎2

∗𝜌Y∗
𝜈
(h). Similarly, using (18), the optimal linear predictor of

the skew-t process can be obtained.
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We investigate the performance of (22) when compared with the Gaussian optimal
predictor, assuming 𝜌(h) = 0.2,𝜓,4(h), 𝜓 = 0, 1, 2 as underlying correlation function, using
crossvalidation. With this goal in mind, we simulate 1000 realizations from a t process Y∗

𝜈 with
𝜈 = 3, 7, 11 and a Gaussian process under the settings of Section 4.3 and for each realization, we
consider 80% of the data for prediction and leave 20% as validation dataset.

For each model and for each realization, we compute the root-mean-square errors (RMSEs),
that is:

RMSEl =

(
1
nl

nl∑
i=1

(
ŷ(si,l) − y(si,l))

)2
) 1

2

,

where y(si,l), i = 1,… ,nl are the observation in the lth validation set and nl is the associated
cardinality (nl = 135 in our example).
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T A B L E 4 Relative mean root-mean-square errors prediction efficiency over 500 runs for a t
process with 𝜈 = 3, 7, 11 and a Gaussian process when predicting using 𝜌Y∗

𝜈
(h) for 𝜈 = 3, 7, 11 and

𝜌(h). The underlying correlation model is 𝜌(h) = 0.2,𝜓,4(h) with 𝜓 = 0, 1, 2.

Simulation from: Y∗
3 Y∗

7 Y∗
11 Gaussian

0.2,𝝍,4(h) Prediction with
𝜌Y∗

3
(h) 1 0.9896 0.9870 0.9838

𝜓 = 0 𝜌Y∗
7
(h) 0.9904 1 0.9998 0.9987

𝜌Y∗
11
(h) 0.9877 0.9998 1 0.9996

𝜌(h) 0.9836 0.9988 0.9996 1

𝜌Y∗
3
(h) 1 0.9399 0.9180 0.8789

𝜓 = 1 𝜌Y∗
7
(h) 0.9503 1 0.9984 0.9895

𝜌Y∗
11
(h) 0.9327 0.9984 1 0.9966

𝜌(h) 0.9095 0.9947 0.9969 1

𝜌Y∗
3
(h) 1 0.8827 0.8263 0.7109

𝜓 = 2 𝜌Y∗
7
(h) 0.9223 1 0.9936 0.9511

𝜌Y∗
11
(h) 0.8834 0.9947 1 0.9817

𝜌(h) 0.8169 0.9643 0.9848 1

Abbreviation: 0.2,𝜓,4(h), Generalized Wendland correlation function.

Finally, we compute the empirical mean of the 500 RMSEs when the prediction is performed
with the optimal linear predictor (22), that is, using 𝜌Y∗

𝜈
(h) with 𝜈 = 3, 7, 11 and the optimal Gaus-

sian predictor with 𝜌(h). Note that, from Theorem 2(e), the prediction using 𝜌(h) can be viewed
as the prediction using 𝜌Y∗

𝜈
(h) when 𝜈 → ∞.

In Table 4, we report the simulation results in terms of relative efficiency , that is, for a given
process and a given 𝜓 = 0, 1, 2, the ratio between the mean RMSE of the best predictor and the
mean RMSE associated with a competitive predictor. This implies that relative efficiency predic-
tion is lower than 1 and it is equal to 1 in the best case. From Table 4, it can be appreciated that
under the t process Y∗

𝜈 , the prediction with 𝜌Y∗
𝜈
(h), for 𝜈 = 3, 7, 11, performs overall better than the

optimal Gaussian prediction using 𝜌(h). As expected, the gain is more apparent when decreasing
the degrees of freedom and increasing 𝜓 . For instance, if 𝜈 = 3 and 𝜓 = 2, the loss of efficiency
predicting with 𝜌(h) is 19% approximatively. It can also be noted that if Y∗

7 , Y∗
11, or Gaussian are

one or two mean squared differentiable (𝜓 = 1, 2), then the prediction using 𝜌Y∗
3
(h) can be very

inefficient. This is not surprising since from Theorem 2(c), Y∗
3 is not mean square differentiable.

Resuming this numerical experiment study suggests that when predicting data exhibiting heavy
tails, the use of the correlation function 𝜌Y∗

𝜈
(h) should be preferred to the use of 𝜌(h).

5 APPLICATION TO MAXIMUM TEMPERATURE DATA

In this section, we apply the proposed t process to a dataset of maximum temperature data
observed in Australia. Specifically, we consider a subset of a global dataset of merged maximum
daily temperature measurements from the Global Surface Summary of Day data (GSOD) with
European Climate Assessment &Dataset (ECA&D) data in July 2011. The dataset is described
in detail in Kilibarda et al. (2014) and it is available in the R package meteo. The subset
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F I G U R E 7 From left to right: (a) spatial locations of maximum temperature in Australia in July 2011 and
(b) prediction of residuals of the estimated t process [Color figure can be viewed at wileyonlinelibrary.com]

we consider is depicted in Figure 7a and consists of the maximum temperature observed on
July 5 in 446 location sites, y(si), i = 1,… , 446, in the region with longitude [110, 154] and
latitude [−39,−12].

Spatial coordinates are given in longitude and latitude expressed as decimal degrees and we
consider the proposed t process defined on the planet Earth sphere approximation S2 = {s ∈ R3 ∶||s|| = 6371}. The first process we use to model this dataset is a t process:

Y𝜈(s) = 𝛽0 + 𝛽1X(s) + 𝜎Y∗
𝜈 (s), s ∈ S

2, (24)

where Y∗
𝜈 is a standard t process. Here, X(s) is a covariate called geometric temperature, which rep-

resents the geometric position of a particular location on Earth and the day of the year (Kilibarda
et al., 2014). As a comparison, we also consider a Gaussian process:

G(s) = 𝛽0 + 𝛽1X(s) + 𝜎G∗(s), s ∈ S
2, (25)

where G∗ is a standard Gaussian process. We assume that the underlying geodesically isotropic
correlation function (Gneiting, 2013; Porcu, Bevilacqua, & Genton, 2016) is of the Matérn and
generalized Wendland type. A preliminary estimation of the t and Gaussian processes, including
the smoothness parameters, highlights a multimodality of the (pairwise) likelihood surface, for
both correlation models and a not mean-square differentiability of the process. For this reason, we
fix the smoothness parameters and we consider the underlying correlation models 𝛼,0.5(dGC) =
e−dGC∕𝛼 and 𝛼,0,5(dGC) = (1 − dGC∕𝛼)5

+ where, given two spherical points si = (loni, lati) and
sj = (lonj, latj), dGC(si, sj) = 6371𝜃ij, is the great circle distance. Here, 𝜃ij = arccos{sin ai sin aj +
cos ai cos aj cos(bi − bj)} is the great circle distance on the unit sphere with ai = (lati)𝜋∕180,
aj = (latj)𝜋∕180, bi = (loni)𝜋∕180, bj = (lonj)𝜋∕180.

For the t process, the parameters were estimated using wpl using the bivariate t distri-
bution with the two-step method described in Section 4 and using the weight function (20)
with dij = 150 km. It turns out that the estimation at the first step leads to fix 𝜈 = 4 in the second
step, irrespective of the correlation model. We also consider a Gaussian misspecified standard

http://wileyonlinelibrary.com
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F I G U R E 8 Upper part: Q-Q plot of the residuals versus the estimated quantiles in the Gaussian and t
models (a and b, respectively). Bottom part: empirical semivariogram (dotted points) of the residuals versus the
estimated semivariogram (solid line) in the Gaussian and t models (c and d, respectively). Distances are
expressed in kilometers

likelihood and wpl estimation as described in Section 4.3, that is, we estimate using the Gaussian
process (25) with the t correlation model 6 fixing 𝜈 = 4.

In addition, we compute the standard error estimation, PLIC and BLIC values through para-
metric bootstrap estimation of the inverse of the Godambe information matrix (Bai et al., 2014).
For standard maximum likelihood, we compute the standard errors as the square root of diago-
nal elements of the inverse of Fisher Information matrix (Mardia & Marshall, 1984). The results
are summarized in Table 5. Note that the regression parameters estimates are quite similar for
the t and Gaussian processes, irrespective of the correlation model. Furthermore, we note that
the standard Gaussian process assigns lower spatial dependence and stronger variance compared
with the other cases. Finally, for each correlation model, both the (pairwise) likelihood informa-
tion criterion PLIC and BLIC select for the pairwise case the t model and for the standard case
the Gaussian model with t correlation function.
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T A B L E 5 Estimates for the t process using wpl with bivariate t distribution and misspecified (full and
weighted pairwise) Gaussian likelihood and for the Gaussian process using standard likelihood with associated
standard error (in parenthesis) and PLIC and BLIC values, when estimating the Australian maximum
temperature dataset using two correlation models: 𝛼,0.5 and 𝛼,0,5

Matérn

Method 𝜷0 𝜷1 𝜶̂ 𝝈̂2 PLIC BLIC RMSE MAE CRPS
t Pairwise 6.652 0.994 58.582 7.589 23906 24689 2.775 2.138 1.807

(1.192) (0.107) (13.492) (1.451)

Missp-Gaussian Pairwise 5.656 1.064 72.435 7.062 24680 26172 2.743 2.112 1.809

(1.514) (0.130) (18.303) (2.024)

Missp-Gaussian Standard 5.673 1.050 63.437 5.385 2228 2244 2.755 2.119 1.813

(0.660) (0.045) (10.41) (0.432)

Gaussian Standard 5.508 1.060 40.484 10.762 2240 2257 2.812 2.155 1.815

(0.558) (0.039) (5.346) (0.813)

Wendland

Method 𝜷0 𝜷1 𝜶̂ 𝝈̂2 PLIC BLIC RMSE MAE CRPS

t Pairwise 6.6375 0.995 331.70 7.622 23890 24624 2.796 2.155 1.807

(1.134) (0.103) (69.03) (1.482)

Missp-Gaussian Pairwise 5.647 1.065 404.81 7.080 24657 26100 2.760 2.127 1.810

(1.446) (0.124) (92.99) (2.032)

Missp-Gaussian Standard 5.579 1.056 349.90 5.485 2232 2249 2.774 2.134 1.815

(0.618) (0.042) (52.030) (0.434)

Gaussian Standard 5.400 1.066 225.89 11.081 2250 2266 2.846 2.177 1.820

(0.530) (0.038) (27.72) (0.835)

Note: Last three columns: associated empirical mean of RMSEs, MAEs, and CRPSs.
Abbreviations: BLIC, bayesian likelihood information criterion; CRPS, continuous ranked probability score; MAE, mean
absolute error; PLIC, pseudolikelihood information criterion; RMSE, root-mean-square error.

Given the estimation of the mean regression and variance parameters of the t process, the
estimated residuals

Ŷ∗
4 (si) =

y(si) − (𝛽0 + 𝛽1X(si))

(𝜎̂2)
1
2

i = 1,…N

can be viewed as a realization of the process Y∗
4 . Similarly we can compute the Gaussian resid-

uals. For the t process, we use the wpl estimates obtained with the bivariate t distribution. Both
residuals can be useful in order to check the model assumptions, in particular the marginal and
dependence assumptions. In the top part of Figure 8a, Q-Q plot of the residuals of the Gaussian
and t processes (from left to right) is depicted for the Matérn case. It can be appreciated that the
t model overall fits better with respect the Gaussian model even if it seems to fail to model prop-
erly the right tail behavior. Moreover, the graphical comparison between the empirical and fitted
semivariogram of the residuals (bottom part of Figure 8) highlights an apparent better fitting of
the t model.
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We want to further evaluate the predictive performances of Gaussian and t processes using
RMSE and mean absolute error (MAE) as in Section 4.4. Specifically, we use the following resam-
pling approach: we randomly choose 80% of the spatial locations and we use the remaining 20%
as data for the predictions. Then, we use the estimates in Table 5 in order to compute RMSE and
MAE. We repeat the approach for 2000 times and record all RMSEs and MAEs. Specifically, for
each jth left-out sample (yL

j (s1),… ,… , yL
j (sK)), we compute

RMSEj =

[
1
K

K∑
i=1

(
yL

j (si) − Ŷ L
j (si)

)2
] 1

2

and

MAEj =
1
K

K∑
i=1

|yL
j (si) − Ŷ L

j (si)|,
where Ŷ L

j (si) is the optimal linear predictor for the t process. Similarly, we can compute the
optimal predictor for the Gaussian process. Finally, we compute the overall mean for both Gaus-
sian and t processes and for both correlation models, that is, RMSE =

∑2000
j=1 RMSEj∕2000 and

MAE =
∑2000

j=1 MAEj∕2000.
In addition, to evaluate the marginal predictive distribution performance, we also consider,

for each sample, the continuous ranked probability score (CRPS) (Gneiting & Raftery, 2007). For
a single predictive cdf F and a verifying observation y, it is defined as:

CRPS(F, y) = ∫
∞

−∞
(F(t) − 1[y,∞](t))2 dt.

Specifically, for each jth left-out sample, we consider the averaged CRPS for the Gaussian and t
distributions as:

CRPSj =
1
K

K∑
i=1

CRPS(F, yL
j (si)) F = FG,FY4 , (26)

for j = 1,… , 2000. In particular in the Gaussian case

CRPS(FG, yL
j (si)) = 𝜎

(
yL

j (si) − 𝜇(s)

𝜎

)[
2FG∗(s)

(
yL

j (si) − 𝜇(s)

𝜎

)
− 1

]

+ 2𝜎fG∗(s)

(
yL

j (si) − 𝜇(s)

𝜎

)
− 𝜎√

𝜋
, (27)

and in the t case with four degrees of freedom:

CRPS(FY4 , y
L
j (si)) = 𝜎

(
yL

j (si) − 𝜇(s)

𝜎

)[
2FY∗

4 (s)

(
yL

j (si) − 𝜇(s)

𝜎

)
− 1

]
(28)

+ 2

[
4𝜎2 + (yL

j (si) − 𝜇(s))2

3𝜎

]
fY∗

4 (s)

(
yL

j (si) − 𝜇(s)

𝜎

)
−

4𝜎B
(

1
2
, 7

2

)
3B2

(
1
2
, 2

) ,
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where 𝜇(s) = 𝛽0 + 𝛽1X(s). We compute the CRPS in (27) and (28) plugging-in the estimates of
the pairwise and standard (misspecified) likelihood estimation methods of 𝛽0, 𝛽1, and 𝜎 using
the R package scoringRules (Jordan, Krueger, & Lerch, 2019). Finally, we compute the over-
all mean for both Gaussian and t processes and for both correlation models, that is, CRPS =∑2000

j=1 CRPSj∕2000.
Table 5 reports the estimated RMSE, MAE, and CRPS. As a general remark, the t process

outperforms the Gaussian process for the three measures of prediction performance irrespective
of the method of estimation and for both correlation models. We point out that RMSE and MAE
are computed using the optimal predictor in the Gaussian case and the linear optimal in the t
case. However, the RMSE and MAE results highlight a better performance for the t process. In
addition, a better RMSE and MAE for the Matérn correlation model with respect to the Wendland
is apparent, irrespective of the type of process. The proposed t process also leads to a clear better
performance of the CRPS with respect to the Gaussian case. In this specific example, the use of
the misspecified Gaussian wpl estimates leads to the best results in terms of RMSE and MAE. On
the other hand, the best CRPS results are achieved by using the wpl estimates using the proposed
t bivariate distribution.

Finally, one important goal in spatial modeling of temperature data is to create a
high-resolution map in a spatial region using the observed data. In Figure 7b, we plot a
high-resolution map of the predicted residuals using the t process with underlying Matérn
correlation model estimated with wpl.

6 CONCLUDING REMARKS

We have introduced a new stochastic process with t marginal distributions for regression and
dependence analysis when addressing spatial with heavy tails. Our proposal allows overcoming
any problem of identifiability associated with previously proposed spatial models with t marginals
and, as a consequence, the model parameters can be estimated with just one realization of the
process. In addition, the proposed t process partially inherits some geometrical properties of the
“parent” Gaussian process, an appealing feature from a data analysis point of view. We have also
proposed a possible generalization, obtaining a new process with the marginal distribution of the
skew-t type using the skew-Gaussian process proposed in Zhang and El-Shaarawi (2010).

In our proposal, a possible limitation is the lack of amenable expressions of the associated
multivariate distributions. This prevents an inference approach based on the full likelihood and
the computation of the optimal predictor. In the first case, our simulation study shows that an
inferential approach based on wpl, using the bivariate t distribution given in Theorem 3, could be
an effective solution for estimating the unknown parameters. An alternative less efficient solu-
tion that requires smaller computational burden can be obtained by considering a misspecified
Gaussian wpl using the correlation function of the t process. In the prediction case, our numeri-
cal experiments show that the optimal linear predictor of the t process performs better than the
optimal Gaussian predictor when working with spatial data with heavy tails.

Another possible drawback concerns the restriction of the degrees of freedom of the t process
to 𝜈 = 3, 4,…. under noninfinite divisibility of the associated Gamma process. This problem could
be solved by considering a Gamma process obtained by mixing the proposed Gamma process
with a process with beta marginals and using the results in Yeo and Milne (1991); however, the
mathematics involved with this approach are much more challenging.
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The estimation of the skew-t process has not been addressed in this article since the
bivariate distribution in this case is quite complicated. In principle, after a suitable
parametrization, Gaussian misspecified wpl can be performed using (18) to estimate the param-
eters of the skew-t process. In this case, an additional issue is the behavior of the information
matrix when 𝜂 = 0 (Arellano-Valle & Azzalini, 2013). Finally, a t process with asymmetric
marginal distribution can also be obtained by considering some specific transformations of the
proposed standard t process as in Rosco, Jones, and Pewsey (2011) or under the two-piece dis-
tribution framework (Arellano-Valle, Gómez, & Quintana, 2005) and this will be studied in
future work.
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APPENDIX A

A.1 Proof of Theorem 1

Proof. Set R𝜈 ≡ W
− 1

2
𝜈 . Then the correlation function of Y∗

𝜈 is given by

𝜌Y∗
𝜈
(h) =

(
𝜈 − 2
𝜈

) (
E(R𝜈(si)R𝜈(sj))𝜌(h)

)
. (A1)

To find a closed form for E(R𝜈(si)R𝜈(sj), we need the bivariate distribution of R𝜈;ij that can
be easily obtained from density of the bivariate random vector W 𝜈;ij given by (Bevilacqua et al.,
2018):

fW 𝜈;ij(wi,wj) =
2−𝜈𝜈𝜈(wiwj)𝜈∕2−1e−

𝜈(wi+wj)

2(1−𝜌2(h))

Γ
(
𝜈

2

)
(1 − 𝜌2(h))𝜈∕2

(
𝜈
√
𝜌2(h)wiwj

2(1 − 𝜌2(h))

)1−𝜈∕2

I𝜈∕2−1

(
𝜈
√
𝜌2(h)wiwj

(1 − 𝜌2(h))

)
, (A2)

where I𝛼(⋅) denotes the modified Bessel function of the first kind of order 𝛼. Vere-Jones (1967)
show the infinite divisibility of W 𝜈;ij.

Then, for each 𝜈 > 2, the bivariate distribution of R𝜈;ij is given by:

fR𝜈;ij(rij) =
2−𝜈+2𝜈𝜈(rirj)−𝜈−1e

− 𝜈

2(1−𝜌2(h))

(
1

r2
i
+ 1

r2
j

)

Γ
(
𝜈

2

)
(1 − 𝜌2(h))𝜈∕2

(
𝜈𝜌(h)

2(1 − 𝜌2(h))rirj

)1− 𝜈

2

I 𝜈
2
−1

(
𝜈𝜌(h)

(1 − 𝜌2(h))rirj

)
.(A3)

Using the identity 0F1(; b; x) = Γ(b)x(1−b)∕2Ib−1(2
√

x) and the series expansion of hypergeomet-
ric function 0F1 in (A3) we have

E(Ra(si)Rb(sj)) =
2−𝜈+2𝜈𝜈

Γ2
(
𝜈

2

)
(1 − 𝜌2(h))𝜈∕2 ∫

R2
+

r−𝜈+a−1
i r−𝜈+b−1

j e
− 𝜈

2(1−𝜌2(h))r2
i e

− 𝜈

2(1−𝜌2(h))r2
j
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× 0F1

(
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2
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i r2
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k=0
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(
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, (A4)

where, using Fubini's theorem

I(k) = ∫
R+

r−𝜈+a−2k−1
i e

− 𝜈

2(1−𝜌2(h))r2
i dri ∫

R+

r𝜈+b−2k−1
j e

− 𝜈

2(1−𝜌2(h))r2
j drj

Using the univariate density fR𝜈 (s)(r) = 2
(
𝜈

2

)𝜈∕2
r−𝜈−1e−
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2r2 ∕Γ
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2

)
, we obtain
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and combining Equations (A5) and (A4), we obtain

E(Ra(si)Rb(sj)) =
2−(a+b)∕2𝜈(a+b)∕2(1 − 𝜌2(h))(𝜈−a−b)∕2Γ
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k
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k
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=
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(
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(
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2
,
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2
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; 𝜌2(h)

)
.

Then, using the Euler transformation, we obtain

E(Ra
𝜈 (si)Rb

𝜈(sj)) =
2−(a+b)∕2𝜈(a+b)∕2

Γ2
(
𝜈

2

) Γ
(
𝜈 − a

2

)
Γ
(
𝜈 − b

2
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2F1

(
a
2
,

b
2
; 𝜈

2
; 𝜌2(h)

)
(A6)

for 𝜈 > a and 𝜈 > b. Finally, setting a = b = 1 in (A6) and using it in (A1) we obtain (6). ▪

A.2 Proof of Theorem 2

Proof. If G is a weakly stationary Gaussian process with correlation 𝜌(h), then from (6) it
is straightforward to see that Y∗

𝜈 is also weakly stationary. Points (b) and (c) can be shown
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using the relations between the geometrical properties of a stationary process and the associated
correlation. Specifically, the mean-square continuity and the m-times mean-square dif-
ferentiability of Y∗

𝜈 are equivalent to the continuity and 2m-times differentiability of
𝜌Y∗

𝜈
(h) at h = 0, respectively (Stein, 1999). Recall that the correlation function of Y∗

𝜈 is
given by:

𝜌Y∗
𝜈
(h) = a(𝜈)[2F1

(1
2
,

1
2
; 𝜈

2
; 𝜌2(h)

)
𝜌(h)]. (A7)

with a(𝜈) =
(𝜈−2)Γ2

(
𝜈−1

2

)
2Γ2

(
𝜈

2

) . Using (5), it can be easily seen that 𝜌(0) = 1 if and only if 𝜌Y∗
𝜈
(0) = 1. Then

Y∗
𝜈 is mean-square continuous if and only if G is mean-square continuous.

For the mean square differentiability, let G m-times mean square differentiable. Using itera-
tively the nth derivative of the 2F1 function with respect to x:

2F(n)
1 (a, b, c, x) = (a)n(b)n

(c)n
2F1(a + n, b + n, c + n, x), n = 1, 2,… (A8)

and applying the convergence condition c > b + a of identity (5), it can be shown that
𝜌(2m)

Y∗
𝜈

(h)|h=0 < ∞ if 𝜈 > 2(2m + 1) and, as a consequence, Y∗
𝜈 is m-times mean square differentiable

under this condition. On the other hand, if 𝜈 ≤ 2(2m + 1) then Y∗
𝜈 is (m − k)-times mean-square

differentiable if 2(2(m − k) + 1) < 𝜈 ≤ 2(2(m − k) + 3), for k = 1,… ,m.
For instance, let assume that G is 1-times mean square differentiable. This implies

that 𝜌(i)(h)|h=0 < ∞, i = 1, 2. Applying (A8) to (A7), the second derivative of 𝜌Y∗
𝜈
(h) is

given by:

𝜌(2)Y∗
𝜈
(h) = a(𝜈)
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.

Then, applying the convergence condition of identity (5), 𝜌(2)Y∗
𝜈
(h)|h=0 <∞ if 2 + 𝜈∕2 > 5,

that is, 𝜈 > 6. Therefore, Y∗
𝜈 is 1-times mean square differentiable if 𝜈 > 6 and 0-times

mean square differentiable if 2 < 𝜈 ≤ 6. Point (d) can be shown recalling that a pro-
cess F is long-range dependent if the correlation of F is such that ∫

Rn
+
|𝜌F(h)|dnh = ∞

(Lim & Teo, 2009). Direct inspection, using series expansion of the hypergeometric
function, shows that ∫

Rn
+
|𝜌Y∗

𝜈
(h)|dnh = ∞ if and only if ∫

Rn
+
|𝜌(h)|dnh = ∞ and, as a con-

sequence, Y∗
𝜈 has long-range dependence if and only if G has long-range dependence.

Finally, note that if 𝜈 > 2 then a(𝜈)2F1

(
1
2
, 1

2
; 𝜈

2
; 0
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1
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; 1
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1
2
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2
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2
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)
is not decreasing in 0 ≤ x ≤ 1. This implies a(𝜈)2F1

(
1
2
, 1

2
; 𝜈

2
; x2

) ≤ 1, that
is, 𝜌Y∗

𝜈
(h) ≤ 𝜌(h). Moreover, lim

𝜈→∞
a(𝜈) = 1 and using series expansion of the hypergeometric

function:
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lim
𝜈→∞ 2F1

(1
2
,

1
2
; 𝜈

2
; 𝜌(h)2

)
= lim

𝜈→∞

⎡⎢⎢⎢⎣1 +

(
1
2

)2

1
𝜌(h)2

1
(
𝜈

2

)
1

+

(
1
2

)2

2
𝜌(h)4

1
(
𝜈

2

)
2

+…+

(
1
2

)2

k
𝜌(h)2k

1
(
𝜈

2

)
k

+…
⎤⎥⎥⎥⎦

= lim
𝜈→∞

⎡⎢⎢⎢⎣1 + 2𝜌(h)2

𝜈
+

(
1
2

)2( 1
2
+ 1

)2
𝜌(h)2

2!
(
𝜈

2

)(
𝜈

2
+ 1

)

+ …+

(
1
2

)2( 1
2
+ 1

)2
…

(
1
2
+ k − 1

)2
𝜌(h)2k

k!
(
𝜈

2

)(
𝜈

2
+ 1

)
…

(
𝜈

2
+ k − 1

) +…
⎤⎥⎥⎥⎦

= 1.

This implies lim
𝜈→∞

𝜌Y∗
𝜈
(h) = 𝜌(h). ▪

A.3 Proof of Theorem 3

Proof. Using the identity 0F1(; b; x) = Γ(b)x(1−b)∕2Ib−1(2
√

x) and the series expansion of hyper-
geometric function 0F1, then under the transformation gi = yi

√
wi and gj = yj

√
wj with Jacobian

J((gi, gj) → (yi, yj)) = (wiwj)1/2, we have:

fY∗
ij
(yij) = ∫

R2
+

fGij|W ij(gij|wij)fW ij(wij)J dwij

= 2−𝜈𝜈𝜈

2𝜋Γ2
(
𝜈

2

)
(1 − 𝜌2(h))(𝜈+1)∕2 ∫

R2
+

(wiwj)(𝜈+1)∕2−1e−
1

2(1−𝜌2(h))

[
wiy2

i +wjy2
j −2𝜌(h)√wiwjyiyj

]

× e−
𝜈(wi+wj)

2(1−𝜌2(h)) 0F1

(
𝜈

2
;
𝜈2𝜌2(h)wiwj

4(1 − 𝜌2(h))2

)
dwij

= 2−𝜈𝜈𝜈

2𝜋Γ2
(
𝜈

2

)
(1 − 𝜌2(h))(𝜈+1)∕2 ∫

R2
+

(wiwj)(𝜈+1)∕2−1e
− 1

2(1−𝜌2(h))

[
y2

i −2𝜌(h)
√

wj
wi

yiyj+𝜈
]

wi e−
(y2

j +𝜈)wj

2(1−𝜌2(h))

×
∞∑

k=0

1

k!
(
𝜈

2

)
k

(
𝜈2𝜌2(h)wiwj

4(1 − 𝜌2(h))2

)k

dwij

= 2−𝜈𝜈𝜈

2𝜋Γ2
(
𝜈

2

)
(1 − 𝜌2(h))(𝜈+1)∕2

∞∑
k=0

I(k)

k!
(
𝜈

2

)
k

(
𝜈2𝜌2(h)

4(1 − 𝜌2(h))2

)k

(A9)

using (3.462.1) of Gradshteyn and Ryzhik (2007), we obtain

I(k) = ∫
R+

w(𝜈+1)∕2+k−1
j e−

(y2
j +𝜈)wj

2(1−𝜌2(h))

[
∫

R+

w(𝜈+1)∕2+k−1
i e

[
−

(y2
i +𝜈)

2(1−𝜌2(h))
wi−

𝜌(h)√wjyiyj
(𝜌2(h)−1)

√
wi

]
dwi

]
dwj

= 2

(
y2

i + 𝜈
(1 − 𝜌2(h))

)−
(
𝜈+1

2
+k

)
Γ (𝜈 + 1 + 2k)∫

R+

w(𝜈+1)∕2+k−1
j e

[
𝜌2 (h)y2

i y2
j

4(1−𝜌2(h))(y2
i +𝜈)

−
(y2

j +𝜈)

2(1−𝜌2(h))

]
wj
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× D−(𝜈+1+2k)

⎛⎜⎜⎜⎝−
𝜌(h)yiyj

√
wj√

(1 − 𝜌2(h))(y2
i + 𝜈)

⎞⎟⎟⎟⎠ dwj

= 2

(
y2

i + 𝜈
(1 − 𝜌2(h))

)−
(
𝜈+1

2
+k

)
Γ (𝜈 + 1 + 2k)A(k), (A10)

where Dn(x) is the parabolic cylinder function. Now, considering (9.240) of Gradshteyn and
Ryzhik (2007):

D−(𝜈+1+2k)

⎛⎜⎜⎜⎝−
𝜌(h)yiyj

√
wj√

(1 − 𝜌2(h))(y2
i + 𝜈)

⎞⎟⎟⎟⎠ = b1e
−

𝜌2 (h)y2
i y2

j wj

4(1−𝜌2(h))(y2
i +𝜈)

×1F1

(
𝜈 + 1

2
+ k; 1

2
;

𝜌2(h)y2
i y2

j wj

2(1 − 𝜌2(h))(y2
i + 𝜈)

)

+ b2
√

wje
−

𝜌2(h)y2
i y2

j wj

4(1−𝜌2(h))(y2
i +𝜈)

×1F1

(
𝜈

2
+ k + 1; 3

2
;

𝜌2(h)y2
i y2

j wj

2(1 − 𝜌2(h))(y2
i + 𝜈)

)
, (A11)

where b1 = 2−(𝜈+1)∕2+k√𝜋
Γ
(
𝜈

2
+k+1

) and b2 = 2−𝜈∕2−k√𝜋𝜌(h)yiyj

Γ
(
𝜈+1

2
+k

)√
(1−𝜌2(h))(y2

i +𝜈)
. Replacing Equations (A11) in (A10) and

using (7.621.4) of Gradshteyn and Ryzhik (2007), we obtain

A(k) = b1 ∫
R+

w(𝜈+1)∕2+k−1
j e−

(y2
j +𝜈)

2(1−𝜌2(h))
wj

1F1

(
𝜈 + 1

2
+ k; 1

2
;

𝜌2(h)y2
i y2

j wj

2(1 − 𝜌2(h))(y2
i + 𝜈)

)
dwj

+ b2 ∫
R+

w𝜈∕2+k+1−1
j e−

(y2
j +𝜈)

2(1−𝜌2(h))
wj

1F1

(
𝜈

2
+ k + 1; 3

2
;

𝜌2(h)y2
i y2

j wj

2(1 − 𝜌2(h))(y2
i + 𝜈)

)
dwj

= b1Γ
(
𝜈 + 1

2
+ k

)(
y2

j + 𝜈

2(1 − 𝜌2(h))

)− (𝜈+1)
2

−k

2F1

(
𝜈 + 1

2
+ k, 𝜈 + 1

2
+ k; 1

2
;

𝜌2(h)y2
i y2

j

(y2
i + 𝜈)(y

2
j + 𝜈)

)

+ b2Γ
(
𝜈

2
+ k + 1

)(
y2

j + 𝜈

2(1 − 𝜌2(h))

)− 𝜈

2
−k−1

2F1

(
𝜈

2
+ k + 1, 𝜈

2
+ k + 1; 3

2
;

𝜌2(h)y2
i y2

j

(y2
i + 𝜈)(y

2
j + 𝜈)

)
(A12)

finally, combining Equations (A12), (A10), and (A9), we obtain

fY∗
ij
(yij) =

𝜈𝜈[(y2
i + 𝜈)(y

2
j + 𝜈)]

−(𝜈+1)∕2Γ2
(
𝜈+1

2

)
𝜋Γ2

(
𝜈

2

)
(1 − 𝜌2(h))−(𝜈+1)∕2

∞∑
k=0

(
𝜈+1

2

)2

k

k!
(
𝜈

2

)
k

(
𝜈2𝜌2(h)

(y2
i + 𝜈)(y

2
j + 𝜈)

)k
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× 2F1

(
𝜈 + 1

2
+ k, 𝜈 + 1

2
+ k; 1

2
;

𝜌2(h)y2
i y2

j

(y2
i + 𝜈)(y

2
j + 𝜈)

)

+
𝜌(h)yiyj𝜈

𝜈+2[(y2
i + 𝜈)(y

2
j + 𝜈)]

−𝜈∕2−1

2𝜋(1 − 𝜌2(h))−(𝜈+1)∕2

∞∑
k=0

(
𝜈

2
+ 1

)2

k

k!
(
𝜈

2

)
k

(
𝜈2𝜌2(h)

(y2
i + 𝜈)(y

2
j + 𝜈)

)k

× 2F1

(
𝜈

2
+ k + 1, 𝜈

2
+ k + 1; 3

2
;

𝜌2(h)y2
i y2

j

(y2
i + 𝜈)(y

2
j + 𝜈)

)

and using (21) we obtain Theorem 3.
▪

A.4 Proof of Theorem 1
Proof. Consider U = (U(s1),… ,U(sn))T , V = (|X1(s1)|,… , |X1(sn)|)T , Q = (X2(s1),… ,X2(sn))T

where Xk = (Xk(s1),… ,Xk(sn))T ∼ Nn(0,Ω), for k = 1, 2, which are assumed to be independent.
By definition of the skew-Gaussian process in (12) we have:

U = 𝜶 + 𝜂V + 𝜔Q ,

where, by assumption V and Q are independent. Thus, by conditioning on V = v, we have U|V =
v ∼ Nn(𝜶 + 𝜂v, 𝜔2Ω), from which we obtain

fU (u) = ∫
Rn
𝜙n(u;𝜶 + 𝜂v, 𝜔2Ω)fV (v) dv.

To solve this integral we need fV (v), that is, the joint density of V = (|X1(s1)|,… , |X1(sn)|)T .
Let Xk = (X1,… ,Xn)T = (X1(s1),… ,X1(sn))T and V = (|X1|,… , |Xn|)T . In addition, consider the
diagonal matrices D(l) = diag{l1,… , ln}, with l = (l1,… , ln) ∈ {−1,+1}n, which are such that
D(l)2 is the identity matrix. Since l◦v = D(l)v (the componentwise product) and X ∼ Nn(0,Ω), we
then have

FV (v) = Pr(V ≤ v) = Pr(|X| ≤ v) = Pr(−v ≤ X ≤ v)

=
∑

l∈{−1,+1}n

(−1)N−Φn(D(l)v; 0,Ω), (N− =
n∑

i=1
Ili=1 det{D(l)})

=
∑

l∈{−1,+1}n

det{D(l)}Φn(D(l)v; 0,Ω).

Hence, by using that

𝜕nΦn(D(l)v; 0,Ω)
𝜕v1 … 𝜕vn

= det{D(l)}Φn(D(l)v; 0,Ω),

we find that the joint density of V is

fV (v) =
∑

l∈{−1,+1}n

[det{D(l)}]2𝜙n(D(l)v; 0,Ω)

=
∑

l∈{−1,+1}n

𝜙n(D(l)v; 0,Ω), ([det{D(l)}]2 = 1)
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=
∑

l∈{−1,+1}n

| det{D(l)}|𝜙n(v; 0,Ωl), (Ωl = D(l)ΩD(l) = (lilj𝜌ij))

=
∑

l∈{−1,+1}n

𝜙n(v; 0,Ωl), (| det{D(l)}| = 1)

= 2
∑

l∈{−1,+1}n∶l≠−l
𝜙n(v; 0,Ωl),

where the last identity is due to Ω−l = D(−l)ΩD(−l) = D(l)ΩD(l) = Ωl for all l ∈ {−1,+1}n, for
example, for n = 3, the sum must be performed on

l ∈ {(+1,+1,+1), (+1,+1,−1), (+1,−1,+1), (−1,+1,+1)}

since

−l ∈ {(−1,−1,−1), (−1,−1,+1), (−1,+1,−1), (+1,−1,−1)}

and both sets produce the same correlation matrices. The joint density of U is thus given by

fU (u) = 2
∑

w∈{−1,+1}n∶w≠−w
∫

Rn
+

𝜙n(u;𝜶 + 𝜂v, 𝜔2Ω)𝜙n(v; 0,Ωl)dv

= 2
∑

w∈{−1,+1}n∶w≠−w
𝜙n(u;𝜶,Al)∫

Rn
+

𝜙n(v; cl,Bl)dv

= 2
∑

w∈{−1,+1}n∶w≠−w
𝜙n(u;𝜶,Al)Φn(cl; 0,Bl),

where Al = 𝜔2Ω + 𝜂2Ωl, cl = 𝜂ΩlA−1
l (u − 𝜶), Bl = Ωl − 𝜂2ΩlA−1

l Ωl, and we have used the identity
𝜙n(u;𝜶 + 𝜂v, 𝜔2Ω)𝜙n(v; 0,Ωl) = 𝜙n(u;𝜶,Al)𝜙n(v; cl,Bl), which follows straightforwardly from
the standard marginal-conditional factorizations of the underlying multivariate normal joint
density. ▪


