56 research outputs found

    Impressões digitais de DNA e RNA através de AP-PCR em Entamoeba histolytica

    Get PDF
    Differences were detected in the gene expression of strains of E. histolytica using RNA (RAP-PCR) and DNA fingerprinting (RAPD). Analysis of the electrophoretic profiles of the gels revealed some polymorphic markers that could be used in the individual characterization of the strains. The 260 bands generated by using five different primers for RAP-PCR, as well as RAPD, were employed in the construction of dendograms. The dendogram obtained based on the RAPD products permitted the distinction of symptomatic and asymptomatic isolates, as well the correlation between the polymorphism exhibited and the virulence of the strains. The dendogram obtained for the RAP-PCR products did not show a correlation with the virulence of the strains but revealed a high degree of intraspecific transcriptional variability that could be related to other biological features, whether or not these are involved in the pathogenesis of amebiasis.Diferenças na expressão gênica de cepas de E. histolytica foram obtidas pelo "fingerprinting" de RNA (RAP-PCR) e DNA (RAPD). A análise do perfil eletroforético do gel revelou alguns marcadores polimórficos que poderiam ser usados na caracterização individual das cepas. As 260 bandas geradas pela utilização de cinco primers diferentes, tanto no RAP-PCR, quanto no RAPD foram empregadas na construção de dendogramas. O dendograma obtido com os produtos do RAPD permitiu a distinção das cepas isoladas de pacientes sintomáticos e assintomáticos, além de correlacionar o polimorfismo exibido com a virulência das mesmas. O dendograma obtido com os produtos do RAP-PCR não apresentou correlação com a virulência das cepas, mas revelou uma exuberante variabilidade transcricional intra-específica, que pode estar relacionada a outros caracteres biológicos envolvidos, ou não, na patogênese da amebíase

    Impressões digitais de DNA e RNA através de AP-PCR em Entamoeba histolytica

    Get PDF
    Differences were detected in the gene expression of strains of E. histolytica using RNA (RAP-PCR) and DNA fingerprinting (RAPD). Analysis of the electrophoretic profiles of the gels revealed some polymorphic markers that could be used in the individual characterization of the strains. The 260 bands generated by using five different primers for RAP-PCR, as well as RAPD, were employed in the construction of dendograms. The dendogram obtained based on the RAPD products permitted the distinction of symptomatic and asymptomatic isolates, as well the correlation between the polymorphism exhibited and the virulence of the strains. The dendogram obtained for the RAP-PCR products did not show a correlation with the virulence of the strains but revealed a high degree of intraspecific transcriptional variability that could be related to other biological features, whether or not these are involved in the pathogenesis of amebiasis.Diferenças na expressão gênica de cepas de E. histolytica foram obtidas pelo "fingerprinting" de RNA (RAP-PCR) e DNA (RAPD). A análise do perfil eletroforético do gel revelou alguns marcadores polimórficos que poderiam ser usados na caracterização individual das cepas. As 260 bandas geradas pela utilização de cinco primers diferentes, tanto no RAP-PCR, quanto no RAPD foram empregadas na construção de dendogramas. O dendograma obtido com os produtos do RAPD permitiu a distinção das cepas isoladas de pacientes sintomáticos e assintomáticos, além de correlacionar o polimorfismo exibido com a virulência das mesmas. O dendograma obtido com os produtos do RAP-PCR não apresentou correlação com a virulência das cepas, mas revelou uma exuberante variabilidade transcricional intra-específica, que pode estar relacionada a outros caracteres biológicos envolvidos, ou não, na patogênese da amebíase

    Impressões digitais de DNA e RNA através de AP-PCR em Entamoeba histolytica

    Get PDF
    Differences were detected in the gene expression of strains of E. histolytica using RNA (RAP-PCR) and DNA fingerprinting (RAPD). Analysis of the electrophoretic profiles of the gels revealed some polymorphic markers that could be used in the individual characterization of the strains. The 260 bands generated by using five different primers for RAP-PCR, as well as RAPD, were employed in the construction of dendograms. The dendogram obtained based on the RAPD products permitted the distinction of symptomatic and asymptomatic isolates, as well the correlation between the polymorphism exhibited and the virulence of the strains. The dendogram obtained for the RAP-PCR products did not show a correlation with the virulence of the strains but revealed a high degree of intraspecific transcriptional variability that could be related to other biological features, whether or not these are involved in the pathogenesis of amebiasis.Diferenças na expressão gênica de cepas de E. histolytica foram obtidas pelo "fingerprinting" de RNA (RAP-PCR) e DNA (RAPD). A análise do perfil eletroforético do gel revelou alguns marcadores polimórficos que poderiam ser usados na caracterização individual das cepas. As 260 bandas geradas pela utilização de cinco primers diferentes, tanto no RAP-PCR, quanto no RAPD foram empregadas na construção de dendogramas. O dendograma obtido com os produtos do RAPD permitiu a distinção das cepas isoladas de pacientes sintomáticos e assintomáticos, além de correlacionar o polimorfismo exibido com a virulência das mesmas. O dendograma obtido com os produtos do RAP-PCR não apresentou correlação com a virulência das cepas, mas revelou uma exuberante variabilidade transcricional intra-específica, que pode estar relacionada a outros caracteres biológicos envolvidos, ou não, na patogênese da amebíase

    Impressões digitais de DNA e RNA através de AP-PCR em Entamoeba histolytica

    Get PDF
    Differences were detected in the gene expression of strains of E. histolytica using RNA (RAP-PCR) and DNA fingerprinting (RAPD). Analysis of the electrophoretic profiles of the gels revealed some polymorphic markers that could be used in the individual characterization of the strains. The 260 bands generated by using five different primers for RAP-PCR, as well as RAPD, were employed in the construction of dendograms. The dendogram obtained based on the RAPD products permitted the distinction of symptomatic and asymptomatic isolates, as well the correlation between the polymorphism exhibited and the virulence of the strains. The dendogram obtained for the RAP-PCR products did not show a correlation with the virulence of the strains but revealed a high degree of intraspecific transcriptional variability that could be related to other biological features, whether or not these are involved in the pathogenesis of amebiasis.Diferenças na expressão gênica de cepas de E. histolytica foram obtidas pelo "fingerprinting" de RNA (RAP-PCR) e DNA (RAPD). A análise do perfil eletroforético do gel revelou alguns marcadores polimórficos que poderiam ser usados na caracterização individual das cepas. As 260 bandas geradas pela utilização de cinco primers diferentes, tanto no RAP-PCR, quanto no RAPD foram empregadas na construção de dendogramas. O dendograma obtido com os produtos do RAPD permitiu a distinção das cepas isoladas de pacientes sintomáticos e assintomáticos, além de correlacionar o polimorfismo exibido com a virulência das mesmas. O dendograma obtido com os produtos do RAP-PCR não apresentou correlação com a virulência das cepas, mas revelou uma exuberante variabilidade transcricional intra-específica, que pode estar relacionada a outros caracteres biológicos envolvidos, ou não, na patogênese da amebíase

    Environmental and sanitary conditions of guanabara bay, Rio de Janeiro

    Get PDF
    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km2. In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay’s degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay’s water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro

    An extensive reef system at the Amazon River mouth

    Get PDF
    Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 x 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (similar to 9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Coordenadoria de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERS)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)BrasoilMCTIBrazilian NavyU.S. NSFGordon and Betty Moore Foundation (GBMF)Univ Fed Rio de Janeiro UFRJ, Inst Biol, BR-21941599 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, COPPE, Inst Alberto Luiz Coimbra Posgrad & Pesquisa Engn, Lab Sistemas Avancados Gestao Prod, BR-21941972 Rio de Janeiro, RJ, BrazilInst Pesquisas Jardim Bot Rio de Janeiro, BR-22460030 Rio De Janeiro, RJ, BrazilUniv Sao Paulo, Inst Oceanog, BR-05508120 Sao Paulo, SP, BrazilUniv Fed Espirito Santo, Dept Oceanog, BR-29199970 Vitoria, ES, BrazilUniv Estadual Norte Fluminense, Lab Ciencias Ambientais, Ctr Biociencias & Biotecnol, BR-28013602 Campos Dos Goytacazes, RJ, BrazilUniv Fed Fluminense, Inst Geociencias, BR-24210346 Niteroi, RJ, BrazilUniv Fed Fluminense, Inst Biol, BR-24210130 Niteroi, RJ, BrazilUniv Fed Rio de Janeiro, Museo Nacl, BR-20940040 Rio De Janeiro, RJ, BrazilFed Univ Para, Inst Estudos Costeiros, BR-68600000 Braganca, PA, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, BR-11070100 Santos, SP, BrazilUniv Fed Pernambuco, Dept Oceanog, BR-50670901 Recife, PE, BrazilUniv Georgia, Dept Marine Sci, Athens, GA 30602 USAUniv Fed Paraiba, BR-58297000 Rio Tinto, PB, BrazilUniv Estadual Santa Cruz, Dept Ciencias Biol, BR-45650000 Ilheus, BA, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, BR-11070100 Santos, SP, BrazilU.S. NSF: OCE-0934095GBMF: 2293GBMF: 2928Web of Scienc

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    WSES Guidelines for the management of acute left sided colonic diverticulitis in the emergency setting

    Full text link
    corecore