213 research outputs found

    Young Muslim women's experiences of Islam and physical education in Greece and Britain: a comparative study

    Get PDF
    Previous research suggests that Muslim women can experience particular problems when taking physical education (PE) lessons, for example with dress codes, mixed-teaching and exercise during Ramadan; and they can face restrictions in extra-curricular activities for cultural and religious reasons. The area is under-researched and there is little evidence of comparative studies that explore similarities and differences in cross-national experiences, which is the aim of this paper. Two studies conducted in Greece and Britain that explored the views of Muslim women on school experiences of physical education are compared. Both studies focused on diaspora communities, Greek Turkish girls and British Asian women, living in predominantly non-Muslim countries. Growing concerns about global divisions between 'Muslims and the West' make this a particularly pertinent study. Qualitative data were collected by interviews with 24 Greek Muslim women, and 20 British Muslim women. \ud <P> \ud Physical education has national curriculum status and a similar rationale in both countries but with different cultures of formality and tradition, which impacted on pupils' experiences. Data suggested that Greek and British groups held positive views towards physical education but were restricted on their participation in extra-curricular activities. For the British women religious identity and consciousness of Islamic requirements were more evident than for the Greek women. Differences in stages of acculturation, historical and socio-cultural contexts contributed to less problematic encounters with physical education for Greek Muslims who appeared more closely assimilated into the dominant culture

    Prevalence of Melanocortin-4 Receptor Deficiency in Europeans and Their Age-Dependent Penetrance in Multigenerational Pedigrees

    Get PDF
    OBJECTIVE— Melanocortin-4 receptor (MC4R) deficiency is the most frequent genetic cause of obesity. However, there is uncertainty regarding the degree of penetrance of this condition, and the putative impact of the environment on the development of obesity in MC4R mutation carriers is unknown

    Leptin and Amylin Act in an Additive Manner to Activate Overlapping Signaling Pathways in Peripheral Tissues: In vitro and ex vivo studies in humans

    Get PDF
    OBJECTIVE: Amylin interacts with leptin to alter metabolism. We evaluated, for the first time, amylin- and/or leptin-activated signaling pathways in human peripheral tissues (hPTs). RESEARCH DESIGN AND METHODS: Leptin and amylin signaling studies were performed in vitro in human primary adipocytes (hPAs) and human peripheral blood mononuclear cells (hPBMCs) and ex vivo in human adipose tissue (hAT) from male versus female subjects, obese versus lean subjects, and subjects with subcutaneous versus omental adipose tissue. RESULTS: The long form of leptin receptor was expressed in human tissues and cells studied in ex vivo and in vitro, respectively. Leptin and amylin alone and in combination activate signal transducer and activator of transcription 3 (STAT3), AMP-activated protein kinase, Akt, and extracellular signal-regulated kinase signaling pathways in hAT ex vivo and hPAs and hPBMCs in vitro; all phosphorylation events were saturable at leptin and amylin concentrations of ∼50 and ∼20 ng/ml, respectively. The effects of leptin and amylin on STAT3 phosphorylation in hPAs and hPBMCs in vitro were totally abolished under endoplasmic reticulum stress and/or in the presence of a STAT3 inhibitor. Results similar to those in the in vitro studies were observed in hAT studied ex vivo. CONCLUSIONS: Leptin and amylin activate overlapping intracellular signaling pathways in humans and have additive, but not synergistic, effects in signaling pathways studied in hPTs in vitro and ex vivo

    Weight Loss after Roux-en-Y Gastric Bypass in Obese Patients Heterozygous for MC4R Mutations

    Get PDF
    BackgroundHeterozygous mutations in melanocortin-4 receptor (MC4R) are the most frequent genetic cause of obesity. Bariatric surgery is a successful treatment for severe obesity. The mechanisms of weight loss after bariatric surgery are not well understood.MethodsNinety-two patients who had Roux-en-Y gastric bypass (RYGB) surgery were screened for MC4R mutations. We compared percent excess weight loss (%EWL) in the four MC4R mutation carriers with that of two control groups: 8 matched controls and with the remaining 80 patients who underwent RYGB.ResultsFour patients were heterozygous for functionally significant MC4R mutations. In patients with MC4R mutations, the %EWL after RYGB (66% EWL) was not significantly different compared to matched controls (70% EWL) and non-matched controls (60% EWL) after 1 year of follow-up.ConclusionsThis study suggests that patients with heterozygous MC4R mutations also benefit from RYGB and that weight loss may be independent of the presence of such mutations

    The Nutritional Induction of COUP-TFII Gene Expression in Ventromedial Hypothalamic Neurons Is Mediated by the Melanocortin Pathway

    Get PDF
    BACKGROUND: The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues. METHODOLOGY/PRINCIPAL FINDINGS: Using hyperinsulinemic-euglycemic clamps and insulinopenic mice, we show that insulin upregulates its expression in the hypothalamus. Immunofluorescence studies demonstrate that COUP-TFII gene expression is restricted to a subpopulation of ventromedial hypothalamic neurons expressing the melanocortin receptor. In GT1-7 hypothalamic cells, the MC4-R agonist MTII leads to a dose dependant increase of COUP-TFII gene expression secondarily to a local increase in cAMP concentrations. Transfection experiments, using a COUP-TFII promoter containing a functional cAMP responsive element, suggest a direct transcriptional activation by cAMP. Finally, we show that the fed state or intracerebroventricular injections of MTII in mice induce an increased hypothalamic COUP-TFII expression associated with a decreased hepatic and pancreatic COUP-TFII expression. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that hypothalamic COUP-TFII gene expression could be a central integrator of insulin and melanocortin signaling pathway within the ventromedial hypothalamus. COUP-TFII could play a crucial role in brain integration of circulating signal of hunger and satiety involved in energy balance regulation

    Mammalian Comparative Sequence Analysis of the Agrp Locus

    Get PDF
    Agouti-related protein encodes a neuropeptide that stimulates food intake. Agrp expression in the brain is restricted to neurons in the arcuate nucleus of the hypothalamus and is elevated by states of negative energy balance. The molecular mechanisms underlying Agrp regulation, however, remain poorly defined. Using a combination of transgenic and comparative sequence analysis, we have previously identified a 760 bp conserved region upstream of Agrp which contains STAT binding elements that participate in Agrp transcriptional regulation. In this study, we attempt to improve the specificity for detecting conserved elements in this region by comparing genomic sequences from 10 mammalian species. Our analysis reveals a symmetrical organization of conserved sequences upstream of Agrp, which cluster into two inverted repeat elements. Conserved sequences within these elements suggest a role for homeodomain proteins in the regulation of Agrp and provide additional targets for functional evaluation

    Role of Hypothalamic Melanocortin System in Adaptation of Food Intake to Food Protein Increase in Mice

    Get PDF
    The hypothalamic melanocortin system—the melanocortin receptor of type 4 (MC4R) and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia), and agouti-related protein (AgRP, antagonist, inducing hyperphagia)—is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED) in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment

    Litter Size Variation in Hypothalamic Gene Expression Determines Adult Metabolic Phenotype in Brandt's Voles (Lasiopodomys brandtii)

    Get PDF
    Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12) and small (3-4) litter sizes, of Brandt's voles (Lasiopodomys brandtii), a rodent species from Inner Mongolia grassland in China.Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb) mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3) mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP) mRNA increased in the offspring from small litters.These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood
    corecore