734 research outputs found
Self-diffusion and viscosity coefficient of fluids in nanochannels
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Fluid viscosity and molecular diffusion in nanochannels were studied by molecular dynamics simulation. Transport processes in a plane channel, a channel of rectangular cross-section, and in porous media were investigated. The channel height was varied from 2 to 50 nm. The interaction between molecules was simulated using the hard sphere (HS) and the Lennard-Jones (LJ) intermolecular potentials. The porous matrix was modeled by cubic packing of spheres of the same radius, and the packing density and the grain size were varied. The dependence of the transport coefficients on the fluid density and channel characteristics (channel height, channel aspect ratio, porosity of the porous medium, accommodation coefficients, etc.) was investigated.Russian Foundation for Basic Research (Grant
No. 10-01-00074) and the Federal Special
Program “Scientific and scientific-pedagogical personnel of innovative Russia in 2009-2013” (projects No. P230 and No. 14.740.11.0579, No. 14.740.11.0103)
Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra
Theories unifying gravity with other interactions suggest spatial and
temporal variation of fundamental "constants" in the Universe. A change in the
fine structure constant, alpha, could be detected via shifts in the frequencies
of atomic transitions in quasar absorption systems. Recent studies using 140
absorption systems from the Keck telescope and 153 from the Very Large
Telescope, suggest that alpha varies spatially. That is, in one direction on
the sky alpha seems to have been smaller at the time of absorption, while in
the opposite direction it seems to have been larger.
To continue this study we need accurate laboratory measurements of atomic
transition frequencies. The aim of this paper is to provide a compilation of
transitions of importance to the search for alpha variation. They are E1
transitions to the ground state in several different atoms and ions, with
wavelengths ranging from around 900 - 6000 A, and require an accuracy of better
than 10^{-4} A. We discuss isotope shift measurements that are needed in order
to resolve systematic effects in the study. The coefficients of sensitivity to
alpha-variation (q) are also presented.Comment: Includes updated version of the "alpha line" lis
Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos
Phobos Laser Ranging (PLR) is a concept for a space mission designed to
advance tests of relativistic gravity in the solar system. PLR's primary
objective is to measure the curvature of space around the Sun, represented by
the Eddington parameter , with an accuracy of two parts in ,
thereby improving today's best result by two orders of magnitude. Other mission
goals include measurements of the time-rate-of-change of the gravitational
constant, and of the gravitational inverse square law at 1.5 AU
distances--with up to two orders-of-magnitude improvement for each. The science
parameters will be estimated using laser ranging measurements of the distance
between an Earth station and an active laser transponder on Phobos capable of
reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10
ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12
cm aperture will permit links that even at maximum range will exceed a photon
per second. A total measurement precision of 50 ps demands a few hundred
photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser
ranging (SLR) facilities--with appropriate augmentation--may be able to
participate in PLR. Since Phobos' orbital period is about 8 hours, each
observatory is guaranteed visibility of the Phobos instrument every Earth day.
Given the current technology readiness level, PLR could be started in 2011 for
launch in 2016 for 3 years of science operations. We discuss the PLR's science
objectives, instrument, and mission design. We also present the details of
science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table
Mitochondrial and nuclear markers reveal a lack of genetic structure in the entocommensal nemertean Malacobdella arrokeana in the Patagonian gulfs
Abstract Malacobdella arrokeana is an entocommensal nemertean exclusively found in the bivalve geoduck Panopea abbreviata, and it is the only representative of the genus in the southern hemisphere. To characterize its genetic diversity, population structure and recent demographic history, we conducted the first genetic survey on this species, using sequence data for the cytochrome oxidase I gene (COI), 16S rRNA (16S) and the internal transcribed spacer (ITS2). Only four different ITS2 genotypes were found in the whole sample, and the two main haplotypes identified in the mitochondrial dataset were present among all localities with a diversity ranging from 0.583 to 0.939. Nucleotide diversity was low (p = 0.001?0.002). No significant genetic structure was detected between populations, and mismatch distribution patterns and neutrality tests results are consistent with a population in expansion or under selection. Analysis of molecular variance (AMOVA) revealed that the largest level of variance observed was due to intrapopulation variation (100, 100 and 94.39 % for 16S, COI and ITS2, respectively). Fst values were also non-significant. The observed lack of population structure is likely due to high levels of genetic connectivity in combination with the lack or permeability of biogeographic barriers and episodes of habitat modification.Fil: Fernandez Alfaya, Jose Elias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Machordom, Annie. Consejo Superior de Investigaciones Cientificas. Museo Nacional de Cs. Naturales; Españ
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
On soft singularities at three loops and beyond
We report on further progress in understanding soft singularities of massless
gauge theory scattering amplitudes. Recently, a set of equations was derived
based on Sudakov factorization, constraining the soft anomalous dimension
matrix of multi-leg scattering amplitudes to any loop order, and relating it to
the cusp anomalous dimension. The minimal solution to these equations was shown
to be a sum over color dipoles. Here we explore potential contributions to the
soft anomalous dimension that go beyond the sum-over-dipoles formula. Such
contributions are constrained by factorization and invariance under rescaling
of parton momenta to be functions of conformally invariant cross ratios.
Therefore, they must correlate the color and kinematic degrees of freedom of at
least four hard partons, corresponding to gluon webs that connect four eikonal
lines, which first appear at three loops. We analyze potential contributions,
combining all available constraints, including Bose symmetry, the expected
degree of transcendentality, and the singularity structure in the limit where
two hard partons become collinear. We find that if the kinematic dependence is
solely through products of logarithms of cross ratios, then at three loops
there is a unique function that is consistent with all available constraints.
If polylogarithms are allowed to appear as well, then at least two additional
structures are consistent with the available constraints.Comment: v2: revised version published in JHEP (minor corrections in Sec. 4;
added discussion in Sec. 5.3; refs. added); v3: minor corrections (eqs. 5.11,
5.12 and 5.29); 38 pages, 3 figure
Dualities for Loop Amplitudes of N=6 Chern-Simons Matter Theory
In this paper we study the one- and two-loop corrections to the four-point
amplitude of N=6 Chern-Simons matter theory. Using generalized unitarity
methods we express the one- and two-loop amplitudes in terms of dual-conformal
integrals. Explicit integration by using dimensional reduction gives vanishing
one-loop result as expected, while the two-loop result is non-vanishing and
matches with the Wilson loop computation. Furthermore, the two-loop correction
takes the same form as the one-loop correction to the four-point amplitude of
N=4 super Yang-Mills. We discuss possible higher loop extensions of this
correspondence between the two theories. As a side result, we extend the method
of dimensional reduction for three dimensions to five dimensions where dual
conformal symmetry is most manifest, demonstrating significant simplification
to the computation of integrals.Comment: 32 pages and 6 figures. v2: minus sign corrections, ref updated v3:
Published versio
Electrophysical properties of nanoporous cerium dioxide–water system
The impedance of nanoporous cerium dioxide with adsorbed water is investigated in the frequency range 103–104 Hz at temperatures near the water–ice phase transition. Here we show that the manifestation of impedance peculiarities at phase transition is caused by the dielectric constant of the matrix
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Experimental study of the radiation emitted by 180-GeV/c electrons and positrons volume-reflected in a bent crystal
The radiation emitted by 180-GeV/c volume-reflected electrons and positrons impinging on a bent crystal has been measured by the H8RD22 Collaboration on the H8 beamline at the CERN SPS. A dedicated spectrometer has been developed to measure high-energy photon spectra (up to similar to 100 GeV) under volume reflection: photon and charged particle beams have been separated by a bending magnet and leptons were detected and tagged by microstrip silicon detectors and a Pb-scintillator sampling calorimeter. A comparison between the experimental and analytical data for the amorphous and volume-reflection cases is presented and the differences are discussed
- …
