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Abstract Fluid viscosity and molecular diffusion in nanochannels were studied by molecular dynamics 
simulation. Transport processes in a plane channel, a channel of rectangular cross-section, and in porous 
media were investigated. The channel height was varied from 2 to 50 nm. The interaction between molecules 
was simulated using the hard sphere (HS) and the Lennard-Jones (LJ) intermolecular potentials. The porous 
matrix was modeled by cubic packing of spheres of the same radius, and the packing density and the grain 
size were varied. The dependence of the transport coefficients on the fluid density and channel 
characteristics (channel height, channel aspect ratio, porosity of the porous medium, accommodation 
coefficients, etc.) was investigated.     
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1. Introduction 
 
 Flows in microchannels have long attracted 
the attention of researchers. This is due to the 
wide occurrence of such flows. They play an 
important part in many natural phenomena and 
occur in various natural porous media. In 
recent decades, interest in microflows has 
increased because of various technological 
applications. Transport processes are 
significant features of fluid flows in 
microchannels. From a practical point of view, 
these processes are especially important in 
porous media. Transport processes in porous 
media play a great role in everyday human life 
and various technological processes. Major 
examples of such processes are heat and mass 
transfer in living organisms, transport of soil 
moisture, impurity precipitation on treatment 
plant filters, acceleration of reactions by 
porous catalysts, motion of hydrocarbons in 
collectors, etc.  

A key transport process is the self-
diffusion of fluid molecules. Molecular self-
diffusion is widely used in practice to obtain 
information on the structure and geometry of 
the pore space (see, for example, Latour et al., 
1993; Song et al., 2000).  

For obvious reasons, microflows and 
especially nanoflows are difficult to study 
experimentally. At best, it is possible to obtain 
information on some integral characteristics 
(flow rate, pressure drop, average velocity, 
etc.). It is very hard to determine the fluid 
transport coefficients in microchannels and 
nanochannels. The greatest success has been 
achieved in determining diffusion coefficients 
(see, e.g., a review Kärger & Ruthven, 1992). 
However, in this case, experimental data have 
been interpreted using macroscopic theories. 
The measurement of the viscosity coefficient 
in microflows and nanoflows is an even more 
difficult problem. It is necessary to develop 
new types of viscosimeter for this purpose (see 
Kang et al., 2010 and references therein).         
Because of the difficulties in experimental 
studies of the transport processes in 
microflows and nanoflows, it is reasonable to 
develop alternative simulation methods. The 
most consistent method of this kind is the 
molecular dynamics (MD) technique, in which 
the transport processes are simulated on the 
basis of the first principles. However, the 
problem is very complex, and the MD 
simulation is taking the first steps in this 
direction. There are few systematic data on the 
transport coefficients in microflows and 
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nanochannels and the difference between them 
and those in the bulk.  
In this article, we present an MD simulation 
study of the fluid viscosity and molecular 
diffusion in nanochannels. Transport processes 
in a plane channel, a channel with a 
rectangular cross-section, and in porous media 
were investigated. The channel height was 
varied from 2 to 50 nm. The interaction of 
molecules was simulated using the hard sphere 
(HS) and the Lennard-Jones (LJ) potentials. In 
first case, the hard plates were the walls of the 
channel. The interaction between the fluid 
molecules and the channel walls was described 
by specular, diffuse or specular-diffuse 
reflection. For LJ fluids, the channel walls 
were simulated by several rows of cubic 
packed molecules. The problem was solved 
using the Schofield scheme.   
The porous matrix was modeled by cubic 
packing of hard spheres of the same radius, 
and the packing density and grain size were 
varied. The calculations were performed in a 
cell with periodic boundary conditions, i.e., in 
fact, an infinite porous medium was modeled.  
The transport coefficients were calculated both 
by using the Green–Kubo formula in terms of 
the correlation function and by calculating the 
mean-square displacement of a molecule along 
and across the channel. The dependence of the 
transport coefficients on fluid density and 
channel characteristics was investigated. 
Because the transport properties of a fluid 
depend on its structure, we first consider the 
fluid structure in nanochannels.   
    
2. Fluid Structure in Nanochannels 
 
   Transport processes in nanochannels are 
determined by two different mechanisms: (i) 
the interactions of fluid molecules with the 
channel walls and (ii) interaction of molecules 
in the bulk. In small channels, the number of 
molecules interacting with the wall is 
comparable with the number of molecules 
interacting in the bulk. Therefore, the fluid 
structure in nanochannels differs significantly 
from the fluid structure in macroscopic 
channels. In particular, the fluid density profile 
in a nanochannel is inhomogeneous. Density 

profiles in the channel cross-section for LJ and 
HS fluids are compared in Fig. 2.1. Here the 
fluid density is described by the parameter 

3σε nV =  for a LJ fluid and 3ndV =ε for a 
HS fluid, n  is the fluid number density, d is 
the diameter of the molecule, and σ is the 
parameter of the LJ potential. A well-defined 
periodic structure is observed. It is evident that 
the density has maximum values at the channel 
walls. The number and height of the maxima 
increase with increasing fluid density. 

 
Fig. 2.1. Density profiles across a nanochannel for HS 
(+), and LJ fluid (×). L  = 60σ , h = 6σ , Vε  = 0.79 
 
The periodic structure is more pronounced in a 
HS fluid than in a LJ fluid at the same average 
density. This is primarily due to the existence 
of a screening layer at the walls for HS 
molecules. For LJ molecules, the screening 
effect is less pronounced because the LJ 
potential is softer than the HS potential. 
Because of the existence of screening zones, 
the effective volume occupied by LJ molecules 
is larger than that occupied by HS molecules. 
Therefore, the effective density of a HS fluid 
is higher than the density of LJ molecules 
(with the same number of molecules in the 
modeling cell). However, the fluid structuring 
in the channel increases with increasing fluid 
density. 
It should be emphasized that the order of the 
fluid near the walls is a characteristic feature 
of nanochannel flows, and it does not 
disappear with increasing distance between the 
channel walls. This is illustrated in Fig. 2.2, 
which shows fluid density profiles across 
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channels of different heights. Fluid structuring 
in the channel practically does not depend on 
the channel height if the latter is greater than 
10σ. In all cases, appreciable structuring takes 
place at a distance from the walls of about 5–
6σ. 

 
Fig. 2.2. Density profiles for nanochannels of different 
heights. Vε = 0.88, 1 – h = 6σ , 2 – h = 12σ , 3 – 

h = 24σ , 4 – h = 48σ  
    

 
Fig. 2.3. Radial distribution function g2 in bulk (solid 
curve) and in a nanochannel at the first density 
maximum (dashed curve). h = 6σ , Vε = 0.88. 

  
Density profiles give local information on the 
fluid structure. However, an analysis of the 
Figs. 2.1 and 2.2 shows that the short-range 
order of the fluid varies in a nanochannel. It 
should be appreciable at least near the walls. 
The fluid structure is characterized by the 
radial distribution function of the molecules. 
Figure 2.3 shows radial distribution functions 
in the bulk and at the first density maximum 
(see Fig. 2.1) in a nanochannel. The distance r 
is in σ. It is evident that the number and 
magnitude of the maxima in the channel are 
significantly larger than those in the open 
system, indicating an increase in the short-

range order in the fluid due to its interaction 
with the walls. Near the wall, the radial 
distribution function decays over a distance an 
order of magnitude larger than in the bulk. In 
fact, quasi-long-range order is observed near 
the wall.   
 
3. Diffusion in Nanochannel 
 
   As rule, microchannel flows are laminar. 
Therefore, transfer processes play a special 
role in such flows. They determine flow 
mixing, heat exchange with the walls, etc. In 
this section, we consider the self-diffusion of 
fluid molecules in plane and rectangular 
nanochannels. The self-diffusion coefficient 
was calculated by the Green–Kubo formula 
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where χ  is the velocity autocorrelation 
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T is the time in which the VACF reaches a 
plateau value (Rudyak et al., 2008). Here N is 
the number of particles in the cell, l is the 
number of partitions of the time interval in 
which the VACF was calculated, and tΔ  is 
the integration step. 
Simultaneously, the self-diffusion coefficient 
was determined from Einstein's relation 
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using calculated values of the mean-square 
displacement of molecules >< 2R . 
To study the self-diffusion of molecules in a 
nanochannel, we considered HS and LJ fluids 
and the diffusion of argon molecules in a 
channel with carbon or silicon walls. It has 
been found that 
• the molecular diffusion in a nanochannel is 

not isotropic; 
• in plane channels, the diffusion coefficients 

along the x and y axes (along the channel) 
are identical and equal to 3/bD , where bD  
is the bulk self-diffusion coefficient; 
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• in small channels, the diffusion coefficient 
across the cannel (along the z axis) is equal 
to zero; 

• in rectangular channels, the diffusion 
coefficient practically does not depend on 
the aspect ratio.  

 
Fig. 3.1. Mean-square displacement of molecules 

)(2 tRz  versus the time for various values of h. Vε = 

0.257 
 
Physically, these results are quite natural. In a 
channel of small size, the mean-square 
displacement is on the order of its height or 
width, and the diffusion coefficient in this 
directions tends to zero as ∞→t . Curves of 
the mean-square displacement of HS 
molecules along the z axis for plane channels 
are shown in Fig. 3.1. Here the lower curve 
corresponds to a height h = 2 nm, the dotted 
curve to h = 5 nm, the dashed curve to h = 10 
nm, and the dot-and-dashed curve to h = 20 
nm. The upper solid straight line is calculated 
for the bulk. The diffusion coefficient is in the 
units of vσ , where v  is the mean thermal 
velocity of the molecules.   
Naturally, the diffusion coefficient decreases 
as the fluid density increases. The diffusion 
coefficient is inversely proportional to the 
fluid density (in the density range studied).  
 
4. Diffusion in Porous Media 
 

The characteristic pore size varies from 
several tens of nanometers to several tens or 
even hundreds of micrometers (Nelson, 2009). 
On these scales, the MD method is, in fact, the 

only adequate method for simulating transport 
processes. In the present work, the porous 
matrix was modeled by cubic packing of 
spheres of the same radius, and the packing 
density and the grain size were varied. The 
calculations were performed in a cell with 
periodic boundary conditions, i.e., in fact, an 
infinite porous medium was modeled. The 
porosity of the matrix pVV /=ϕ , ( pV  is the 
pore volume and V is the total volume of the 
medium) was varied from 0.5 to 0.9, and the 
fluid density pf VVn /=  from 0.07 to 0.565 
( fV  is the volume of the fluid molecules). In 
almost all cases, we studied the self-diffusion 
of molecules of dense gases or moderately 
dense gases. At the upper limit, the fluid 
density is close to the liquid density.  

 
 

Fig. 4.1. Time dependence of the VACF (in free path 
times)  

 
The self-diffusion coefficient for the fluid 
molecules was obtained using the Green–Kubo 
formula (3.1). Figure 4.1 shows a typical 
VACF normalized to the mean value of the 
squared velocity for a fluid of density 

0707.0=n . Here curve 1 corresponds to the 
fluid VACF in the bulk and curve 2 in the 
porous medium. In all the calculations 
performed, the VACF has a negative well (see 
Fig. 4.1), whose depth and position depend on 
the porosity, fluid density, and the size ratio of 
the fluid molecules to the particles of the 
porous medium. Unlike in self-diffusion in the 
bulk, a negative well is also present for 
rarefied gases. Its occurrence is due to the 

smtRz /,)( 22

st,
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interaction of molecules with the solid matrix, 
whereas in the bulk, this behavior is typical 
only of liquids and is related to the occurrence 
of short-range order in the system. A 
significant change in the VACF of fluid 
molecules in a porous medium leads to a 
decrease in the diffusion coefficient compared 
to its value in the bulk. This is quite natural 
from a physical point of view; however, it is 
important to understand what these changes 
are and how they depend on the parameters of 
the porous medium and fluid.  
One of the most important parameters that 
determine diffusion in a porous medium is the 
ratio of the molecular radius of the transported 
substance r to the particle size of the porous 
matrix R. The dependence of the self-diffusion 
coefficient on rR /=λ  was simulated for 
various densities, porosities, etc. In all cases, 
this dependence is well described by the 
logarithmic law 
          βλα += ln/ 0DD ,        (4.1) 
where the coefficients α and β depend on the 
parameters of the system. Hereinafter, the 
diffusion coefficient is normalized to its value 
in the bulk 0D . Figure 4.2 shows a typical 
dependence of the diffusion coefficient on the 
ratio λ  obtained by MD simulation for a HS 
fluid of density 0707.0=n . Here the points 
are the MD data. These data are well 
approximated (solid curve) by the relation 

4.0ln22.0/ 0 −= λDD  (see Eq. (4.1)).  

 
Fig. 4.2. Normalized self-diffusion coefficient versus λ 
 
Previously, dependences of this kind have also 
been obtained experimentally. A similar 

dependence was derived in Kim, 2008, where 
the self-diffusion coefficient of water 
molecules in a packing of glass spheres was 
measured using nuclear magnetic resonance 
(NMR). The size of the spheres was varied 
from 10 to 600 µm. Immediate comparison of 
our data with experimental results Kim, 2008 
is impossible because in our calculations, self-
diffusion was simulated in pores with 
characteristic sizes of a few to several tens of 
nanometers, i.e., several orders of magnitude 
smaller. Nevertheless, the dependences for the 
self-diffusion coefficient obtained in Kim, 
2008 agree qualitatively with Eq. 4.1. 
Another important characteristic of the system 
is its porosity. The porosity formed by packing 
of hard spheres is naturally related to the grain 
(sphere) radius of the packing. It is easy to see 
that 3/41 3Rnpπϕ −= , where pn  is the grain 
density in the skeleton (number of grains in 
unit volume). Since the dependence of the 
diffusion coefficient on the grain radius is 
given by Eq. 4.1, it is obvious that its 
dependence on the porosity will also be 
determined by a logarithmic function. This is 
indeed so; the dependence of the diffusion 
coefficient on the porosity of the skeleton is 
given by the relation 1ln/ 0 += ϕγDD , 
where γ is a coefficient that depends on the 
parameters of the system considered. In 
particular, for a fluid with 0707.0=n  and 

25=λ , this dependence has the form 
          1ln984.0/ 0 += ϕDD .     (4.2) 
As in the bulk, the self-diffusion coefficient of 
the fluid depends significantly on its density. 
The dependence of the self-diffusion 
coefficient on the Knudsen number Kn is 
linear for various ratios of the radii and 
porosities ( RlKn /= , where l is the mean free 
path length of the molecules). This behavior of 
the self-diffusion coefficient is typical of ideal 
gases; in this case, the linear dependence of D 
on Kn should correspond to an inversely 
proportional dependence of the self-diffusion 
coefficient on fluid density. Indeed, the 
simulation results show that  
           nDD // 0 α= ,           (4.3) 
where α  is a coefficient that depends on the 
parameters of the system. Figure 4.3 shows the 
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dependence of the self-diffusion coefficient on 
the fluid density for 25=λ and 5.0=ϕ . Here 
the points are MD simulation data, and the 
solid curve corresponds to Eq. 4.3. For the 
specified values of the matrix parameters, 

66.2=α . 
It should be noted that the difference between 
the self-diffusion coefficient in a porous 
medium and the corresponding bulk value is 
significantly larger for less dense fluids than 
for dense fluids. This is due to an increase in 
the contributions of interactions of fluid 
molecules with the porous medium to the total 
number of interactions. 

 

 
 

Fig. 4.3. Normalized self-diffusion coefficient versus 
fluid density 
 
In accordance with Eq. 3.1, the self-diffusion 
coefficient depends on time. A comparison of 
a typical time dependence of the self-diffusion 
coefficient )(tD  for porous media with 

)(0 tD  is presented in Fig. 4.4. The diffusion 
coefficient in the bulk increases steadily and 
reaches a plateau value which is the actual 
value of the diffusion coefficient in the bulk. 
In porous media, the function )(tD  is not 
monotonic. This function first increases to 
reach a maximum and then decreases. In 
porous media, a plateau value is also reached, 
but it is determined by the porosity of the 
medium and is lower than the corresponding 
value in the bulk (cf. the two curves in Fig. 
4.4). As a rule, the time dependence of the 
self-diffusion coefficient at short times is 
studied using NMR measurements. At such 
times, the molecule displacement is smaller 

then the pore size. However, on these scales, 
the behavior of the function )(tD  changes 
sharply (as can be seen in Fig. 4.4.) i.e., the 
mean-square displacement of a molecule is not 
described by the well-known Einstein–
Langevin formula ( tR ~2 >< ). Thus, one 
must be careful in interpreting NMR data.  
  

 
 
Fig. 4.4. Normalized self-diffusion coefficient versus 
time (in free path times). The solid curve corresponds to 
a porous medium ( 5.0=ϕ , 25=λ , 0707.0=n ) and 
the dotted curve to the bulk 
 
The short-time branch of the diffusion 
coefficient curve, marked by crosses in Fig. 
4.5, is described by the formula 22.0

0 ~/ −tDD . 
In this case the mean-square displacement of 
molecules is determined by the relation: 

78.02 ~ tR . Thus, short-time diffusion which 
is generally measured by NMR is not classical. 
This is so-called sub-diffusion αtR ~2 , 
where the parameter 1<α  and depends on 
the fluid density and porosity. 
 
5. Fluid Viscosity in Nanochannels 
 
   Change in the fluid structure in 
nanochannels should have a significant effect 
on transfer processes in them. The change in 
the structure leads to several consequences that 
should be taken into account in studying and 
modeling the transport processes. First, the 
change in the fluid structure should change the 
equation of state of the fluid. Therefore, the 
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equality of the pressures and temperatures of 
fluids in a channel and the bulk does not imply 
that their densities are equal. Second, the 
determination of fluid density in nanochannels 
requires great care. This is due to the fact that 
near the walls there are screening 
zones. Therefore, if the physical volume of a 
nanochannel is equal to V, the volume 
available for HS fluid molecules VV <~ . On 
the other hand, for LJ molecules there is the 
opposite (though insignificant) effect, where 
fluid molecules are introduced into the 
molecular lattice of the channel walls. As a 
result, at a given pressure and temperature, the 
fluid densities in the bulk and in nanochannels 
are different. In practice, the quantities 
measured in microchannels and nanochannels 
are usually pressure and temperature. Therefore, 
in the present work, fluid viscosities in the 
bulk and in nanochannels were compared at 
given pressure and temperature.  
Finally, it should be noted that fluid 
structuring in nanochannels disturbs its 
homogeneity (see Fig. 2.2), and the transport 
processes are no longer isotropic. The 
viscosity coefficient is given by the relation  
        3/)( yzxzxy ηηηη ++= ,       (5.1) 
where the contributions are calculated by 
Green–Kubo type formulas  

∫=
T

dtt
0

)(
5
1

αβαβ χη , βαβα ≠= ,,,, zyx , 

and αβχ are the corresponding correlation 
functions.  
For definiteness, let the z axis is directed 
across the channel and let periodic boundary 
conditions be imposed along the x and y 
axes. Then the coefficients xzη  and yzη  are 
equal to each other, and the coefficient xyη is 
close to the value observed in the bulk. 
This paper gives data of a systematic MD 
simulation of the shear viscosity of a LJ fluid 
(argon) in a plane channel with carbon (σ  = 
3.4 Å, Bkε = 28 K) or silicon (σ  = 3.826 Å, 

Bkε = 202.45K) walls. The viscosity 
coefficient of the fluid η  in the channel was 
compared with its value 0η  in the bulk. The 

bulk fluid density was 9.0=Vε . The fluid 
density in the channel was determined from 
the condition of equal pressures of the fluid in 
the channel and in the bulk. In the channel 
with the carbon walls, 9.0=Vε , and in the 
channel with silicon walls, Vε  = 0.912 for a 
channel height h = 18σ  and Vε  = 0.936 for 
h = 6σ .  

 
Fig. 5.1. Viscosity coefficient of argon versus distance 
between the walls of carbon molecules (×) and silicon 
molecules (+) at T = 200 K 
 
The dependence of the viscosity coefficient 
(5.1) on the height of the channel is shown in 
Fig. 5.1. As expected, the viscosity coefficient 
increases with decreasing channel 
height. However, this increase depends greatly 
on the material of the walls. In the channel 
with silicon walls, the viscosity increases more 
significantly. 
 

 
Fig. 5.2. Argon viscosity versus temperature in the bulk 
(×), in the channel with carbon walls (□), and with 
silicon walls (◊)  
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The temperature dependence of viscosity is 
shown in Fig. 5.2. Here open symbols 
correspond to the total value of the viscosity 
coefficient, and filled symbols to the viscosity 
in the plane perpendicular to the channel walls. 
Increasing the temperature leads to a decrease 
in the viscosity in both the open system and in 
the channel. However, in the channel, the rate 
of this decrease is higher, and the effects of the 
channel walls on viscosity will therefore be 
more pronounced at low temperatures.  

 
Conclusions 
 
   Current studies of transport processes in 
microchannels and nanochannels are the first 
steps toward an understating of these 
phenomena. MD simulation data on the 
viscosity and self-diffusion coefficients in 
nanochannels and in a porous medium show 
that the most important factor in these 
processes is the interaction between fluid 
molecules and the channel walls (porous 
medium) and the change in the fluid 
structure.  In a microchannel, the fluid short-
range order, (which largely determines, e.g., 
the fluid viscosity) changes at the channel 
wall. 
In nanochannels, fluid structuring is of 
fundamental importance. However, the 
interaction with the boundary leads to a 
pressure drop along the channel. Accordingly, 
the fluid structure will vary along the 
channel. If the channel fluid temperature does 
not change, the pressure drop along the 
channel implies a decrease in the fluid 
density. Fluids in nanochannels are always 
compressible. Therefore, generally speaking, 
the transfer coefficients vary along the channel 
and one can introduce only some averaged 
transfer coefficients. 
Finally it should be noted that in determining 
the fluid density in nanochannels, one should 
take into account the presence of screening 
zones near the channel walls. This effect 
becomes negligible in channels where 

σ100≥h .  
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