39 research outputs found

    Limits on spin-dependent WIMP-nucleon cross-sections from the first ZEPLIN-II data

    Get PDF
    The first underground data run of the ZEPLIN-II experiment has set a limit on the nuclear recoil rate in the two-phase xenon detector for direct dark matter searches. In this paper the results from this run are converted into the limits on spin-dependent WIMP-proton and WIMP-neutron cross-sections. The minimum of the curve for WIMP-neutron cross-section corresponds to 0.07 pb at a WIMP mass of around 65 GeV.Comment: 12 pages, 2 figures, to be published in Physics Letters

    The ZEPLIN-III dark matter detector: performance study using an end-to-end simulation tool

    Get PDF
    We present results from a GEANT4-based Monte Carlo tool for end-to-end simulations of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase detector which measures both the scintillation light and the ionisation charge generated in liquid xenon by interacting particles and radiation. The software models the instrument response to radioactive backgrounds and calibration sources, including the generation, ray-tracing and detection of the primary and secondary scintillations in liquid and gaseous xenon, and subsequent processing by data acquisition electronics. A flexible user interface allows easy modification of detector parameters at run time. Realistic datasets can be produced to help with data analysis, an example of which is the position reconstruction algorithm developed from simulated data. We present a range of simulation results confirming the original design sensitivity of a few times 10−810^{-8} pb to the WIMP-nucleon cross-section.Comment: Submitted to Astroparticle Physic

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Origins and Rationale for the African American Economic Summit

    No full text
    African Americans, Economics and social disparities, Emic economic insights,

    The emergence of modern human behavior in South Asia: A review of the current evidence and discussion of its possible implications

    No full text
    corecore