11 research outputs found

    Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures

    Get PDF
    Chirality is a fundamental property of electrons with the relativistic spectrum found in graphene and topological insulators. It plays a crucial role in relativistic phenomena, such as Klein tunneling, but it is difficult to visualize directly. Here we report the direct observation and manipulation of chirality and pseudospin polarization in the tunneling of electrons between two almost perfectly aligned graphene crystals. We use a strong in-plane magnetic field as a tool to resolve the contributions of the chiral electronic states that have a phase difference between the two components of their vector wavefunction. Our experiments not only shed light on chirality, but also demonstrate a technique for preparing graphene’s Dirac electrons in a particular quantum chiral state in a selected valley

    WSe2 Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature

    Get PDF
    Monolayers of molybdenum and tungsten dichalcogenides are direct bandgap semiconductors, which makes them promising for optoelectronic applications. In particular, van der Waals heterostructures consisting of monolayers of MoS2 sandwiched between atomically thin hexagonal boron nitride (hBN) and graphene electrodes allows one to obtain light emitting quantum wells (LEQWs) with low-temperature external quantum efficiency (EQE) of 1%. However, the EQE of MoS2- and MoSe2-based LEQWs shows behavior common for many other materials: it decreases fast from cryogenic conditions to room temperature, undermining their practical applications. Here we compare MoSe2 and WSe2 LEQWs. We show that the EQE of WSe2 devices grows with temperature, with room temperature EQE reaching 5%, which is 250× more than the previous best performance of MoS2 and MoSe2 quantum wells in ambient conditions. We attribute such different temperature dependences to the inverted sign of spin–orbit splitting of conduction band states in tungsten and molybdenum dichalcogenides, which makes the lowest-energy exciton in WSe2 dark

    The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals

    Get PDF
    The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrates the potential of InSe for electronic and photonic technologies

    Statistics of pre-localized states in disordered conductors

    Get PDF
    The distribution function of local amplitudes of single-particle states in disordered conductors is calculated on the basis of the supersymmetric σ\sigma-model approach using a saddle-point solution of its reduced version. Although the distribution of relatively small amplitudes can be approximated by the universal Porter-Thomas formulae known from the random matrix theory, the statistics of large amplitudes is strongly modified by localization effects. In particular, we find a multifractal behavior of eigenstates in 2D conductors which follows from the non-integer power-law scaling for the inverse participation numbers (IPN) with the size of the system. This result is valid for all fundamental symmetry classes (unitary, orthogonal and symplectic). The multifractality is due to the existence of pre-localized states which are characterized by power-law envelopes of wave functions, ψt(r)2r2μ|\psi_t(r)|^2\propto r^{-2\mu}, μ<1\mu <1. The pre-localized states in short quasi-1D wires have the power-law tails ψ(x)2x2|\psi (x)|^2\propto x^{-2}, too, although their IPN's indicate no fractal behavior. The distribution function of the largest-amplitude fluctuations of wave functions in 2D and 3D conductors has logarithmically-normal asymptotics.Comment: RevTex, 17 twocolumn pages; revised version (several misprint corrected

    Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2

    No full text
    The chirality of electronic Bloch bands is responsible for many intriguing properties of layered two-dimensional materials. We show that in bilayers of transition metal dichalcogenides (TMDCs), unlike in few-layer graphene and monolayer TMDCs, both intralayer and interlayer couplings give important contributions to the Berry curvature in the K and -K valleys of the Brillouin zone. The interlayer contribution leads to the stacking dependence of the Berry curvature and we point out the differences between the commonly available 3R type and 2H type bilayers. Due to the interlayer contribution, the Berry curvature becomes highly tunable in double gated devices. We study the dependence of the valley Hall and spin Hall effects on the stacking type and external electric field. Although the valley and spin Hall conductivities are not quantized, in MoS2 2H bilayers, they may change sign as a function of the external electric field, which is reminiscent of the behavior of lattice Chern insulators

    Evidence of the triangular lattice of crystallized electrons from time resolved luminescence

    Get PDF
    We show that the recombination kinetics of two-dimensional electrons with acceptor bound holes is a sensitive probe of the local spatial structure of the electronic system. Using the time resolved magnetoluminescence, we extract the regime of the electron Wigner solid and establish its local configuration consistent with the triangular lattice model. Up to the melting point, the amplitude of the thermal vibrations of the electron crystal is derived from the temperature dependence of the recombination kinetics

    Nonlinear Transport Properties of Quantum Dots

    Full text link
    The influence of excited levels on nonlinear transport properties of a quantum dot weakly coupled to leads is studied using a master--equation approach. A charging model for the dot is compared with a quantum mechanical model for interacting electrons. The current--voltage curve shows Coulomb blockade and additional finestructure that is related to the excited states of the correlated electrons. Unequal coupling to the leads causes asymmetric conductance peaks. Negative differential conductances are predicted due to the existence of excited states with different spins.Comment: 11 pages (excl. Figures), 3 Figures are available on request, RevTe
    corecore