18 research outputs found

    Shot noise measurements in NS junctions and the semiclassical theory

    Full text link
    We present a new analysis of shot noise measurements in normal metal-superconductor (NS) junctions [X. Jehl et al., Nature 405, 50 (2000)], based on a recent semiclassical theory. The first calculations at zero temperature assuming quantum coherence predicted shot noise in NS contacts to be doubled with respect to normal contacts. The semiclassical approach gives the first opportunity to compare data and theory quantitatively at finite voltage and temperature. The doubling of shot noise is predicted up to the superconducting gap, as already observed, confirming that phase coherence is not necessary. An excellent agreement is also found above the gap where the noise follows the normal case.Comment: 2 pages, revtex, 2 eps figures, to appear in Phys. Rev.

    Andreev reflection in Au/La_{2-x}Sr_{x}CuO_{4} point-contact junctions: separation between pseudogap and phase-coherence gap

    Get PDF
    We made point-contact measurements with Au tips on La_{2-x}Sr_{x}CuO_{4} samples with 0.08 < x < 0.20 to investigate the relationship between superconducting gap and pseudogap. We obtained junctions whose conductance curves presented typical Andreev reflection features at all temperatures from 4.2 K up to T_c^A close to the bulk T_c. Their fit with the BTK-Tanaka-Kashiwaya model gives good results if a (s+d)-wave gap symmetry is used. The doping dependence of the low temperature dominant isotropic gap component Delta_{s} follows very well the T_{c} vs. x curve. These results support the separation between the superconducting (Andreev) gap and the pseudogap measured by angle-resolved photoemission spectroscopy (ARPES) and tunneling.Comment: 4 pages, 5 eps figures, 1 table. SNS 2001 Conferenc

    Shot noise in tunneling transport through molecules and quantum dots

    Full text link
    We consider electrical transport through single molecules coupled to metal electrodes via tunneling barriers. Approximating the molecule by the Anderson impurity model as the simplest model which includes Coulomb charging effects, we extend the ``orthodox'' theory to expand current and shot noise systematically order by order in the tunnel couplings. In particular, we show that a combined measurement of current and shot noise reveals detailed information of the system even in the weak-coupling limit, such as the ratio of the tunnel-coupling strengths of the molecule to the left and right electrode, and the presence of the Coulomb charging energy. Our analysis holds for single-level quantum dots as well.Comment: 8 page

    Electron-electron scattering effects on the Full Counting Statistics of Mesoscopic Conductors

    Full text link
    In the hot electron regime, electron-electron scattering strongly modifies not only the shot noise but also the full counting statistics. We employ a method based on a stochastic path integral to calculate the counting statistics of two systems in which noise in the hot electron regime has been experimentally measured. We give an analytical expression for the counting statistics of a chaotic cavity and find that heating due to electron-electron scattering renders the distribution of transmitted charge symmetric in the shot noise limit. We also discuss the frequency dispersion of the third order correlation function and present numerical calculations for the statistics of diffusive wires in the hot electron regime

    Influence of a Random Telegraph Process on the Transport through a Point Contact

    Full text link
    We describe the transport properties of a point contact under the influence of a classical two-level fluctuator. We employ a transfer matrix formalism allowing us to calculate arbitrary correlation functions of the stochastic process by mapping them on matrix products. The result is used to obtain the generating function of the full counting statistics of a classical point contact subject to a classical fluctuator, including extensions to a pair of two-level fluctuators as well as to a quantum point contact. We show that the noise in the quantum point contact is a sum of the (quantum) partitioning noise and the (classical) noise due to the two-level fluctuator. As a side result, we obtain the full counting statistics of a quantum point contact with time-dependent transmission probabilities.Comment: 8 pages, 2 figure; a new section about experiments and a figure showing the crossover from sub- to superpoissonian noise have been adde

    Spin-Flip Noise in a Multi-Terminal Spin-Valve

    Full text link
    We study shot noise and cross correlations in a four terminal spin-valve geometry using a Boltzmann-Langevin approach. The Fano factor (shot noise to current ratio) depends on the magnetic configuration of the leads and the spin-flip processes in the normal metal. In a four-terminal geometry, spin-flip processes are particular prominent in the cross correlations between terminals with opposite magnetization.Comment: 4 pages, 3 figure

    Current noise in long diffusive SNS junctions in the incoherent MAR regime

    Full text link
    Spectral density of current fluctuations at zero frequency is calculated for a long diffusive SNS junction with low-resistive interfaces. At low temperature, T << Delta, the subgap shot noise approaches linear voltage dependence, S=(2/ 3R)(eV + 2Delta), which is the sum of the shot noise of the normal conductor and voltage independent excess noise. This result can also be interpreted as the 1/3-suppressed Poisson noise for the effective charge q = e(1+2Delta/eV) transferred by incoherent multiple Andreev reflections (MAR). At higher temperatures, anomalies of the current noise develop at the gap subharmonics, eV = 2Delta/n. The crossover to the hot electron regime from the MAR regime is analyzed in the limit of small applied voltages.Comment: improved version, to be published in Phys. Rev.

    Interface effects on the shot noise in normal metal- d-wave superconductor Junctions

    Full text link
    The current fluctuation in normal metal / d-wave superconductor junctions are studied for various orientation of the crystal by taking account of the spatial variation of the pair potentials. Not only the zero-energy Andreev bound states (ZES) but also the non-zero energy Andreev bound states influence on the properties of differential shot noise. At the tunneling limit, the noise power to current ratio at zero voltage becomes 0, once the ZES are formed at the interface. Under the presence of a subdominant s-wave component at the interface which breaks time-reversal symmetry, the ratio becomes 4eComment: 13 pages, 3 figure

    Stochastic resonance in an RF SQUID with shunted ScS junction

    Get PDF
    Using a point (superconductor–constriction–superconductor, ScS) contact in a single-Josephson-junction superconducting quantum interference device (RF SQUID) provides stochastic resonance conditions at any arbitrary small value of loop inductance and contact critical current, unlike SQUIDs with more traditional tunnel (superconductor–insulator–superconductor, SIS) junctions. This is due to the unusual potential energy of the ScS RF SQUID which always has a barrier between two wells, thus making the device bistable. This paper presents the results of a numerical simulation of the stochastic dynamics of the magnetic flux in an ScS RF SQUID loop affected by band-limited white Gaussian noise and low-frequency sine signals of small and moderate amplitudes. The difference in stochastic amplification of RF SQUID loops incorporating ScS and SIS junctions is discussed

    Shot noise in normal metal-d-wave superconducting junctions

    Full text link
    We present theoretical calculations and predictions for the shot noise in voltage biased junctions of dx2−y2d_{x^2-y^2} superconductors and normal metal counter-electrodes. In the clean limit for the d-wave superconductor the shot noise vanishes at zero voltage because of resonant Andreev reflection by zero-energy surface bound states. We examine the sensitivity of this resonance to impurity scattering. We report theoretical results for the magnetic field dependence of the shot noise, as well the fingerprints of subdominant ss- and dxyd_{xy} pairing channels.Comment: 15 pages, 8 figures and 3 tables embedde
    corecore