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Abstract

Using a point (superconductor-constriction-superconductor, ScS) contact in a single-Josephson-junction supercon-
ducting quantum interference device (RF SQUID) provides stochastic resonance conditions at any, arbitrary small,
value of loop inductance and the contact critical current unlike SQUIDs with more traditional tunnel (superconductor-
insulator-superconductor, SIS) junctions. This is due to an unusual potential energy of the ScS RF SQUID which
always has a barrier between two wells thus making the device bistable. This paper presents the results of the nu-
merical simulation of stochastic dynamics of magnetic flux in the ScS RF SQUID Iffepted by band-limited

white Gaussian noise and low-frequency sine signal of small and moderate amplitude fiétende in stochastic
amplification of the RF SQUID loops incorporating ScS and SIS junctions is discussed.
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1. Introduction

The sensitivity of superconducting quantum interference devices (SQUIDs) and their quantum analogues, SQUBIDs,
has practically reached the quantum limitation [1-3]. However, with increase of the quantizing loop inductance up to
L ~ 109 - 1071° H, the thermodynamic fluctuations lead to quick deterioration of the energy resolution. As shown
earlier [4-8], sensitivity of magnetometers can be enhanced in this case by using stochastic resonance (SR). The SR
phenomenon whose conception introduced in early 1980ths works [9-11] manifests itself in non-monotonic rise of
a system response to a weak periodic signal when noise of certain intensity is added to the system. Owing to ex-
tensive studies of the last two decades, the stochastic reson@eciehas been revealed in a variety of natural and
artificial systems, both classical and quantum. The analytical approaches and quantifying criterions for estimation of
the ordering due to of the noise impact were determined and described in reviews [12-14]. In particular, the sensi-
tivity of a bistable stochastic system fed with a weak periodic signal can be significantly improved in the presence of
thermodynamic or external noise that provides switching between the metastable states of the system. For example,
it was experimentally proved [4] that the gain of a harmonic informational signal can reach 40 dB at certain optimal
noise intensity in a SQUID with SIS (superconductor-insulator-superconductor) Josephson junction. Moreover, the
stochastic amplification in SIS-based SQUIDs can be maximized at a noise levéiciestito enter the SR mode
by means of stochastic-parametric resonance (SE&)t¢15] emerging in the system due to the combined action of
the noise, a high-frequency electromagnetic field and the weak informational signal. An alternative way of enhancing
the RF SQUID sensitivity is suppressing noise with strong (suprathreshold) periodic RF pumping of properly cho-
sen frequency which results in better signal-to-noise ratio in output signal [16]. In the latter case switching between
metastable states is mainly due to strong regular RF pumping unlike SR where the dominating switching mechanism
is noise weakly perturbed [17].
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In recent years the quantum point contacts (QPCs) with do@eductance have attracted strong interest from
the point of view of both quantum channel conductance stuaiel building qubits with high energy level splitting.
Currently, two types of point contacts are distinguishexhehding on the ratio between the contact dimendiand
the electron wave lengthe = h/pe : d >> A for a classical point contact [18] artti~ A¢ for a quantum point
contact [19-21]. Practically, superconducting QPCs apeswonductor-constriction-superconductor (ScS) castac
of atomic-size (ASCs). The critical currents of such cotg@an take discrete values. The relatigff(¢) between
supercurrentS®S and the order parameter phas@ both classical and quantum cases at lowest temperaflires (

0) essentially dfers [18, 20, 21] from the current-phase relation for a SIS fjion described by the well-known
Josephson formuleg'S = I¢sing. The corresponding potential energies in motion equatimegherefore dierent
as well.

When SIS junction is incorporated into a superconductig lvith external magnetic flup, = ®y/2 (where
®y = h/2e ~ 2.07- 1071° Wb is magnetic flux quantum) piercing the loop, its currenage relation$'S(¢) leads
to formation of a symmetric two-well potential energy?'S(®) of the whole loop that principally enables the SR
dynamics only forg. = 2xLl;/®p > 1. B is dimensionless non-linearity parameter sometimes atalie main
SQUID parameter. In contrast, the potential enddgifS(®) of a superconducting loop with QPC always has the
barrier with a singularity at its top, and two metastablerent states of the loop fiered by internal magnetic fluxes
@ can be formally achieved at any vanishingly I8w << 1. In the quantum case, the most important consequences
of the "singular” barrier shape are the essential rise ofrosopic quantum tunneling rate and the increased energy
level splitting in flux qubits [2, 3].

In the classical limit, SR dynamics of the superconductiraplwith ScS Josephson contact and non-trivial poten-
tial USS(®) would differ substantially from the previously explored [4-6, 8] cabthe SIS junction and would be
much alike the 4-terminal SQUID dynamics [7]. In presentkv@mumerical analysis is given of stochastic amplifi-
cation of weak low-frequency harmonic signals in a supedcating loop broken by ScS Josephson junction at low
temperature¥ << T, . Specific focus is giving to low critical currents, i.e. ratthigh-impedance contacts (ASCs)
wheng = 2rLl/Dg < 1.

2. ScSjunction loop model and numerical computation technique

The stochastic dynamics of magnetic flux in a RF SQUID loopdiiin Fig. 1a) was studied by numerical solution
of the motion equation (Langevin equation) in the resigfishunted junction (RSJ) model [22]:
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Figure 1: (Color online) (a) Potential energy’' S of SIS-junction-based RF SQUID loop with large non-lingagarametep. = 12 vs. normalized
internal magnetic flux. Inset is the RF SQUID loop schematic. (b) Potential energfdRF SQUIDs with SIS junctior3( = 1.5) and ScS junction
(BL = 0.75) vs. normalized internal magnetic fluxThe barrier heightaU in both SQUIDs are approximately equal at chosen valugs ofixed
magnetic fluxde = ®p/2 (xe = 1/2) is applied to symmetrize the potential.
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whereC is the capacitanceR is the normal shunt resistance of the Josephson junctias;the loop inductance;
®(t) is the internal magnetic flux in the loog}(®, ®¢) is the loop potential energy, which is the suwhid, @) =
Uwm + U; of magnetic energy of the loop and the coupling energy of tisehson junction. Time-dependent external
magnetic flux®.(t) piercing the loop contains a constant and a variable, dietunoise, components. This equation is
analogous of the motion equation for a particle of M@assoving in potential) with friction codficienty = 1/R. The
junction coupling energy; is specific to its nature; we will consider the case of clea8 Segntacts in the ballistic
mode of the electron fly-through [18].

For both classical [18] and quantum [19-21] ScS point cdstaith the critical current, at arbitrary temperature
T the current-phase relation reads

A(T) cos%
15%(¢) = Icsin% tanh% nAeg),

wherel 3¢5(y) is the supercurrent through the contaq(fT) is the superconducting energy gap (order parameiés),
the ditference between the order parameter phases at the contaks™fg is Boltzmann constangis the electron
chargeRis the normal contact resistance. In the lifiit 0 the expression (2) transforms into

> |c(T) = (2)

13°5(¢) = Icsin% sgn (cosg) (3)
The potential energy of a superconducting loop broken bystif contact,) S¢S(d, @), reads as
Scs _(@-De)* g TP
U>*(D, @) = L E3* cos oo’ 4)
whereEJSCS = l.®g/m is the maximum coupling energy of the ScS Josephson contact.
To compare, the potential energy of a loop with a tunnel jiomas [22]
O — Dg)? 27 ®
SIS(d. @ =( e _EgSls ar
U=>(D, D) o Bcosg (5)

whereE3'S = 1.®o/2r is the maximum coupling energy of the tunnel Josephsonijmct
Reducing the fluxes by flux quantuly : X = ®@/®g, Xe = /Do, the potential energy - bﬂpg/ZL, and using the
parameteg, , Egs. (4) and (5), can be rewritten as, correspondingly

2
uSeS(X, Xe) = (x _ZXE) - % cosizX (6)
and
sis _(x=x)* B
U >(X, Xe) = > 2 cos(2rx) (7

Reduced potential energy'S(x, Xe) of the loop with a tunnel junction has two or more local miniats, > 1
only. When the loop is biased by a fixed magnetic fibx = ®¢/2 (xe = 1/2), the two lowest minima become
symmetric. This case is illustrated in Fig. 1a for large eglu = 12, for better illustrativeness.

The essential feature attributed to the potential ena?&3(x, xe) of RF SQUID with ScS contact is that the inter-
well barrier with the singularity at its top keeps its finiteigght down to vanishingly sma#l, and therefore small
andl.. Fig. 1b shows the two-well potential of RF SQUID with the SafBitact a3, = 0.75 < 1 (solid line) and, for
comparison, the potential of the loop with the SIS junctidashed line) with the same energy barrier heiglit(see
also Fig. 2a). The noise of thermal or any other origin casagtehing between the metastable states corresponding
to the minima olU (®). The average switching ratgy (of transition from a metastable state to another one) fatewh
Gaussian noise with the intensifyand high barriersAU/D > 1) is estimated by well-known Kramers rate[23]

POt _ p “’20”‘;*’ exp(-AU/D) (8)
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Figure 2: (Color online) (a) Energy barrier heighity and (b) spacing\x between the potential energy minima vs. paramgteior RF SQUIDs
with ScS and SIS Josephson junctions.

for parabola wells and smooth parabola barrier, which isoainthe case for SIS-SQUID potential. Hepg =
[UZ (Xpottom) /C1*? andwyp, = [UZ(X0p)/C]Y? are angular frequencies of small-amplitude oscillatioearithe bottom
of the well and the top of the barrier, correspondingly, deditby the potential curvature in these poingss the
damping constant.

Meanwhile, for parabola wells and sharp barrier that iseetosthe ScS SQUID potential shape, especially at low
non-linearity parametedy , the switching time is given by formula (5.4) in [24], whiahdur terms will read as:

ar AX)? [ D
e = Ve X D exptaurm) ©

For the thermal noiseD = kgT. In this work we do not presume any specific nature of the ndisaever,
considering it white Gaussian. The sole limitation we imgp@ssetting an upper cutfofrequencyf, for the noise
band which does not exceed the reversal time of the flux rétaxan the loop ¥ = R/L to provide the adiabatic
mode for the SQUID operation. Previous estimations [8, DHpwing from the numerical simulation show that
a "reasonable” value fof, can be chosen so that its further increase does not pragtatédct the results of the
calculations. Usuallyi; ~ (10° - 10%) fs is high enough wheré& is the signal frequency. Adding small periodic signal
with frequencyfs to the external fluxb. on the noise background enables stochastic resonance ohgafa particle
in the bistable potential when the SR condition fulfils:

rsw ~ 2fs (20)

For typical experimental parametetsy 3-101°H,C ~ 3-10°F,R~ 1-10? Ohm,l. ~ 10°-10°Aandg, =
0.1-3, we estimate McCumber parameter accounting for the cpaei to be low enouglc = 27R?1.C/dg < 1. In
this case (aperiodic, or overdamped, oscillator) the mdsgmon-oscillatory, and therefore the first term with seton
derivative in Equation 1 can be neglected. Note that a comtile resistancédR ~ 100 Ohm is close to ASC since
the number of conducting channels (atomic chains) is smalth®e considered situation, even at low temperatures,
remains classical one because of strong dissipation. Theigmal frequencys ~ 1-10 Hz<< 1/7_ and the upper-
limited noise frequency band (quasi-white noise) with affitfrequencyf. ~ 10* Hz << 1/7. make the problem
adiabatic, as noted above, and allows to attribute all tispeddence to the potential energy in Equation (1):

T.— +
dt X
For the case of an ScS contact, by substituting Equatiom(Byuation (11), we get

dx aU(xt) _0 (11)

d—X = i{xe(t) - X+ B sin(rx) - sgn[cosrx)]}, (12)
dt TL 2r
and for an SIS junction, taking into account Equation (7)&épn (11) reads as
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dx 1 BL .

i TL[xe(t) X+ o sin(2rX)] (13)
The external magnetic flux(t) is the sum of the fixed bias flux. = 0.5, the useful sighat,. = asin 2rfst and

the noise fluxxy. Theoretically, the noise is assumed tasbeorrelated, Gaussian-distributed, white noisg:= £(t) ,

(ER)E(t — 1)) = 2D6(t —t'). During numerical simulation it is emulated by a randonmitner generator with Gaussian

distribution, variancédd = ¢ and repetition period of abouf2 When solving the equation in a finitefiirence

approximation, the sampling frequency # @vhich is equivalent to noise frequency ban®2 kHz. This allows us

to consider the noise to be quasi-white for stochastic dination of the signals with frequendy = 1 — 10 Hz.
Equations (12) and (13) were solved by Heun algorithm matiifiie stochastic equations [25, 26]. 10 to 50

runs were made to obtain 16-second time series wiflerdint noise realizations. They underwent then fast Fourier

transform (FFT), and the resulted spectral densBig&y) of output signal (internal flux in the loop) were averaged.

In this work we use the spectral amplitude gain of the wealopar signal as the SR quantifier defined as the ratio of

spectral densities of output and input magnetic fluxes:

k(@) = Spar(@)/Sgin(@) (14)

3. Numerical simulation results and discussion

The energy barrier heigittU, as follows from Equations (6) and (7), is determinegsbyand is diferent for the
cases of ScS and SIS junctions (Fig.2a). As can be seen, ladhevith SIS junction (referred to as SIS SQUID)
the two-well potential with two metastable states needegmtépare conditions for stochastic amplification of a weak
information signal exists only @ > 1 while it is finite for anyB_ in the ScS SQUID. BotiAU andD , being in
exponent, are the core parameters to define switching §at8), (9). For a specified frequency of a weak harmonic
signal, the SR condition (10) requirement can be met by awing the noise power. Meanwhile, the amplitude gain
k(w) of the small signal, according to the two-state theory [ZHould depend on spacingk between the local
minima of potential energy ().

o) = Faw (AX)?
@)= D@z, + D2

Fig. 2b shows\x as a function of for the ScS and SIS SQUIDs. It is obvious from Fig. 2b that hbéhspacing
AXS®S between the potential energy minima and the barrier heighS tend to zero remaining finite wheta — 0.

In contrast, for SIS SQUIDAUS'S andAxS'S vanish a, = 1.

Calculation of the small-signal gain with the same barrigght for both potentialsAUS®S = AUS!S | show that
maximal gain for SIS SQUID is roughly twice higher than tha &R amplifier based on ScS SQUID (Fig. 3a).

Maximal gain is obtained when SR condition (10) is met. Afiabstituting (10) in (15) the gain becomes a
function of onlyAx andD. However, the obtained fierence in the gain is less than could be derived from only
the ratio of AxS®S to AxS'S because the gain maxima correspond tedént optimal noise intensitid3y, = o2,
which depend on the potential shapes modifying switchibgng. Usingo, from Fig.3a to calculate gain ratio by
formula (15), we gekS'S/ kS = 2,15 versus experimental value of 2.37. This is good enoughgdakto account the
simplicity of the two-state model. Fig.3b illustrates themative case when the minima spacing for both potentials
are equal while the barriers areférent. Unexpectedly, there is no agreement here betweerteded and calculated
gain ratios. Nevertheless, it should be stressed thatt@dspier gain in ScS SQUID, the SR amplification in it is
possible at very small critical currents (typical for AS@s)d low noise level (that may correspond to thermodynamic
fluctuations at ultralow temperatures). Meanwhile, therea amplification of weak informational signals in SIS
SQUIDs for allg,. < 1.

Fig. 4 displays a set of SR gain in ScS SQUID vs. noise intgmsitves for severgd. < 1 and corresponding
amplitude Fourier spectra of output signal normalized byrfer spectra of input signal thus showing the spectral
amplificationk(f). It is seen that, for sine signal of small amplitude={ 10-%) the system response remains linear
even for smaljg. = 0.1 that is indicated by no sign of third harmonic in the outpuctrum (even harmonics are
absent due to the potential symmetry). The latter case sorels to millikelvin temperature range for real devices.

(15)
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Figure 3: (Color online) Amplitude gaik of sine signal in RF SQUIDs with ScS and SIS junctions vs. eaisiplitudes = DY2. g parameters

are chosen so that (a) the potential barriets in both SQUIDs were equal; (b) the minima spacittg in both SQUIDs were equal. Signal
amplitudea = 0.001 and frequencys = 10 Hz

Although it is obvious that the detected spectrum is cleatrwer temperature because of smaller noise background,
additionally the signal gain also turns out to be high enaaigh = 0.1.
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Figure 4: (Color online) (a) Amplitude gakof sine signal in RF SQUID with ScS junction for variogs = 0.1, 0.3, 0.5 vs. noise amplitude

o = D2, (b) Spectral gain(f) for the same values ¢f_ as in panel (a) and noise levels corresponding to the peakabf eurve in panel (a).
Signal amplitudea = 0.001 and frequencys = 10 Hz.

The dfect of degradation of stochastic amplification in ScS SQUIihthe signal amplitude increase is shown in
Fig.5. The higher the signal amplitude, the smaller theadigain, while third harmonic (and other odd ones) in the
output Fourier spectrum become visible fo£ 3- 1072 and 102 (even harmonics are absent because of the potential
symmetry), thus the amplification becomes markedly noealin Since signal-to-noise ratio (SNR) enhancement
in output signal is hardly expected for moderate-to-sudsthold signals on the background of rather weak noise
(associated with smafl, ) [28], the linear amplification is more suitable in this ca3@erefore, the weakest signals
are stochastically amplified by ScS SQUID moeetively.

The maximum stochastic gain for a weak+£ 0.001 ) low-frequency fs = 10 Hz) sine signal in both types of
SQUIDs is presented in Fig. 6a vs. the main SQUID paranggter 0.1 — 3. Formal divergence of the signal gain
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Figure 5: (Color online) (a) Amplitude gain of sine signalshwarious amplitudes in ScS RF SQUID vs. noise amplitude= D2, Spectral

amplitude gairk(f) for the samea as in panel (a) and noise levels corresponding to the gaiwresunaxima in panel (a). The signal frequency
fs = 10 Hz, parametes. = 0.1

obtained for SIS SQUID &, = 1 will be smeared by noise in real experiments. Besides, aslditional analysis
shows, the non-linear signal distortions drastically asel the dynamic range narrows in the region in the vicinity
of B. = 1. For the ScS SQUID, the dependence of the signal SR gaineom#in parametes. has no distinctive
features within a wide range gf includingB. < 1. The narrowing of the dynamic range and rise of the noraline
distortion is observed @ << 1 alike SIS-SQUID-based amplifiers nggar = 1 due to vanishingly small potential
barrier. Fig. 6b presents the optimal noise levels whereimamx gain is reached as a function of paramgterAs
expected, the optimal noise levels depend mostly on thénhefghe barrier between the two metastable current states.
It follows from the obtained results that in small signal eppmation when the response is supposed to be linear, SIS

SQUIDs should be used as SR amplifiergat 1, while ScS SQUIDs are suitable for small critical currearigior
inductances associated with flux qubits, that isfok 1.
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Figure 6: (Color online) (a) Maximum galgmax and (b) optimal noise amplituden, for ScS and SIS RF SQUIDs vs. parameier The signal
frequencyfs = 10 Hz and amplitude = 0.001.



4. Conclusion

In the given work the noise-induced stochastic amplificatb weak informational signals at low temperatures
T << T¢ in RF SQUIDs containing ScS contacts (QPCs) is consideited. shown that SR amplification of weak
sine signals emerges at any, vanishingly small, value @mateiB, . This is due to an unusual shape of the potential
barrier between the two metastable states with a singylarits top and always finite height. It should be noted that
there is no noise-induced re-normalization of the potéetiergy of ScS SQUID because the noise is band-limited.
That justifies the use of the zero-temperature approximatio

Taking into account quantum corrections to the decay rathefnetastable current states in SR [29] can lead
to essential modification of the dynamics and rise of SR g&or. example, as reported in paper [30], under some
conditions the presence of the noise could enhance quarmusiation in superconducting flux qubits. With temper-
ature rise up td, SR dynamics of RF SQUID with QPC will change due to tempeeadependence of the potential,
USS(T) [31], tending, apparently, to that of the SIS SQUIDs.

It is worth noting that a discontinuous ("saw-like”) curtgrhase relationship at = 0 is also a characteristic of
other types of Josephson contacts with direct conductange 4-terminal microbridge junction and superconductor
normal metal-superconductor (SNS) junction that resulis singularity on the top of the barrier of the potential of
such junctions [32, 33] and hence their stochastic dynasfiosild be similar to the behavior of RF SQUID with the
considered ScS contact.

In addition, we would like highlight one important featufeSR. Even in the case when the SReet in SQUID
is considered as "stochastic filtration” [34], and no enteaimcsignal-to-noise ratio is anticipated as compared to its
"input” value [28], the SR ffect has almost self-evident advantage over other ampiditatethods because it works
directly inside the sensor, thus providing a kind of "firsti"aio signal detection that we could call "Just-In-Place
Amplification” unlike widely spread "On-Chip” technical kions where amplification is carried out in a separate
unit situated near the sensor on a common substrate.
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