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Abstract

Using a point (superconductor-constriction-superconductor, ScS) contact in a single-Josephson-junction supercon-
ducting quantum interference device (RF SQUID) provides stochastic resonance conditions at any, arbitrary small,
value of loop inductance and the contact critical current unlike SQUIDs with more traditional tunnel (superconductor-
insulator-superconductor, SIS) junctions. This is due to an unusual potential energy of the ScS RF SQUID which
always has a barrier between two wells thus making the device bistable. This paper presents the results of the nu-
merical simulation of stochastic dynamics of magnetic flux in the ScS RF SQUID loop affected by band-limited
white Gaussian noise and low-frequency sine signal of small and moderate amplitude. The difference in stochastic
amplification of the RF SQUID loops incorporating ScS and SIS junctions is discussed.
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1. Introduction

The sensitivity of superconducting quantum interference devices (SQUIDs) and their quantum analogues, SQUBIDs,
has practically reached the quantum limitation [1–3]. However, with increase of the quantizing loop inductance up to
L ∼ 10−9 − 10−10 H, the thermodynamic fluctuations lead to quick deterioration of the energy resolution. As shown
earlier [4–8], sensitivity of magnetometers can be enhanced in this case by using stochastic resonance (SR). The SR
phenomenon whose conception introduced in early 1980ths works [9–11] manifests itself in non-monotonic rise of
a system response to a weak periodic signal when noise of certain intensity is added to the system. Owing to ex-
tensive studies of the last two decades, the stochastic resonance effect has been revealed in a variety of natural and
artificial systems, both classical and quantum. The analytical approaches and quantifying criterions for estimation of
the ordering due to of the noise impact were determined and described in reviews [12–14]. In particular, the sensi-
tivity of a bistable stochastic system fed with a weak periodic signal can be significantly improved in the presence of
thermodynamic or external noise that provides switching between the metastable states of the system. For example,
it was experimentally proved [4] that the gain of a harmonic informational signal can reach 40 dB at certain optimal
noise intensity in a SQUID with SIS (superconductor-insulator-superconductor) Josephson junction. Moreover, the
stochastic amplification in SIS-based SQUIDs can be maximized at a noise level insufficient to enter the SR mode
by means of stochastic-parametric resonance (SPR) effect [15] emerging in the system due to the combined action of
the noise, a high-frequency electromagnetic field and the weak informational signal. An alternative way of enhancing
the RF SQUID sensitivity is suppressing noise with strong (suprathreshold) periodic RF pumping of properly cho-
sen frequency which results in better signal-to-noise ratio in output signal [16]. In the latter case switching between
metastable states is mainly due to strong regular RF pumping unlike SR where the dominating switching mechanism
is noise weakly perturbed [17].
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In recent years the quantum point contacts (QPCs) with direct conductance have attracted strong interest from
the point of view of both quantum channel conductance studies and building qubits with high energy level splitting.
Currently, two types of point contacts are distinguished, depending on the ratio between the contact dimensiond and
the electron wave lengthλF = h/pF : d >> λF for a classical point contact [18] andd ∼ λF for a quantum point
contact [19–21]. Practically, superconducting QPCs are superconductor-constriction-superconductor (ScS) contacts
of atomic-size (ASCs). The critical currents of such contacts can take discrete values. The relationIS cS

s (ϕ) between
supercurrentIS cS

s and the order parameter phaseϕ in both classical and quantum cases at lowest temperatures (T →
0) essentially differs [18, 20, 21] from the current-phase relation for a SIS junction described by the well-known
Josephson formulaIS IS

s = Ic sinϕ. The corresponding potential energies in motion equationsare therefore different
as well.

When SIS junction is incorporated into a superconducting loop with external magnetic fluxΦe = Φ0/2 (where
Φ0 = h/2e ≈ 2.07 · 10−15 Wb is magnetic flux quantum) piercing the loop, its current-phase relationIS IS

s (ϕ) leads
to formation of a symmetric two-well potential energyUS IS (Φ) of the whole loop that principally enables the SR
dynamics only forβL = 2πLIc/Φ0 > 1. βL is dimensionless non-linearity parameter sometimes called the main
SQUID parameter. In contrast, the potential energyUS cS (Φ) of a superconducting loop with QPC always has the
barrier with a singularity at its top, and two metastable current states of the loop differed by internal magnetic fluxes
Φ can be formally achieved at any vanishingly lowβL << 1. In the quantum case, the most important consequences
of the ”singular” barrier shape are the essential rise of macroscopic quantum tunneling rate and the increased energy
level splitting in flux qubits [2, 3].

In the classical limit, SR dynamics of the superconducting loop with ScS Josephson contact and non-trivial poten-
tial US cS (Φ) would differ substantially from the previously explored [4–6, 8] caseof the SIS junction and would be
much alike the 4-terminal SQUID dynamics [7]. In present work a numerical analysis is given of stochastic amplifi-
cation of weak low-frequency harmonic signals in a superconducting loop broken by ScS Josephson junction at low
temperaturesT << Tc . Specific focus is giving to low critical currents, i.e. rather high-impedance contacts (ASCs)
whenβL = 2πLIc/Φ0 < 1.

2. ScS junction loop model and numerical computation technique

The stochastic dynamics of magnetic flux in a RF SQUID loop (inset in Fig. 1a) was studied by numerical solution
of the motion equation (Langevin equation) in the resistively shunted junction (RSJ) model [22]:
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Figure 1: (Color online) (a) Potential energyUS IS of SIS-junction-based RF SQUID loop with large non-linearity parameterβL = 12 vs. normalized
internal magnetic fluxx. Inset is the RF SQUID loop schematic. (b) Potential energies of RF SQUIDs with SIS junction (βL = 1.5) and ScS junction
(βL = 0.75) vs. normalized internal magnetic fluxx. The barrier heights∆U in both SQUIDs are approximately equal at chosen values ofβL. Fixed
magnetic fluxΦe = Φ0/2 (xe = 1/2) is applied to symmetrize the potential.

LC
d2Φ(t)

dt2
+

L
R

dΦ(t)
dt
+ L
∂U(Φ,Φe)
∂Φ

= Φe(t), (1)
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whereC is the capacitance,R is the normal shunt resistance of the Josephson junction;L is the loop inductance;
Φ(t) is the internal magnetic flux in the loop;U(Φ,Φe) is the loop potential energy, which is the sumU(Φ,Φe) =
UM +UJ of magnetic energy of the loop and the coupling energy of the Josephson junction. Time-dependent external
magnetic fluxΦe(t) piercing the loop contains a constant and a variable, including noise, components. This equation is
analogous of the motion equation for a particle of massC moving in potentialU with friction coefficientγ = 1/R. The
junction coupling energyUJ is specific to its nature; we will consider the case of clean ScS contacts in the ballistic
mode of the electron fly-through [18].

For both classical [18] and quantum [19–21] ScS point contacts with the critical currentIc, at arbitrary temperature
T the current-phase relation reads

IS cS
s (ϕ) = Ic sin

ϕ

2
tanh

∆(T ) cosϕ2
2kBT

, Ic(T ) =
π∆(T )

eR
, (2)

whereIS cS
s (ϕ) is the supercurrent through the contact,∆(T ) is the superconducting energy gap (order parameter),ϕ is

the difference between the order parameter phases at the contact ”banks”, kB is Boltzmann constant,e is the electron
charge,R is the normal contact resistance. In the limitT = 0 the expression (2) transforms into

IS cS
s (ϕ) = Ic sin

ϕ

2
sgn (cos

ϕ

2
) (3)

The potential energy of a superconducting loop broken by theScS contact,US cS (Φ,Φe), reads as

US cS (Φ,Φe) =
(Φ −Φe)2

2L
− ES cS

J cos
∣

∣

∣

∣

∣

πΦ

Φ0

∣

∣

∣

∣

∣

, (4)

whereES cS
J = IcΦ0/π is the maximum coupling energy of the ScS Josephson contact.

To compare, the potential energy of a loop with a tunnel junction is [22]

US IS (Φ,Φe) =
(Φ −Φe)2

2L
− ES IS

J cos
2πΦ
Φ0
, (5)

whereES IS
J = IcΦ0/2π is the maximum coupling energy of the tunnel Josephson junction.

Reducing the fluxes by flux quantumΦ0 : x = Φ/Φ0, xe = Φe/Φ0, the potential energy - byΦ2
0/2L, and using the

parameterβL, Eqs. (4) and (5), can be rewritten as, correspondingly

uS cS (x, xe) =
(x − xe)2

2
− βL

2π2
cos|πx| (6)

and

uS IS (x, xe) =
(x − xe)2

2
−
βL

4π2
cos(2πx) (7)

Reduced potential energyuS IS (x, xe) of the loop with a tunnel junction has two or more local minima atβL > 1
only. When the loop is biased by a fixed magnetic fluxΦe = Φ0/2 (xe = 1/2), the two lowest minima become
symmetric. This case is illustrated in Fig. 1a for large valueβL = 12, for better illustrativeness.

The essential feature attributed to the potential energyuS cS (x, xe) of RF SQUID with ScS contact is that the inter-
well barrier with the singularity at its top keeps its finite height down to vanishingly smallβL and therefore smallL
andIc. Fig. 1b shows the two-well potential of RF SQUID with the ScScontact atβL = 0.75< 1 (solid line) and, for
comparison, the potential of the loop with the SIS junction (dashed line) with the same energy barrier height∆U (see
also Fig. 2a). The noise of thermal or any other origin causesswitching between the metastable states corresponding
to the minima ofU(Φ). The average switching ratersw (of transition from a metastable state to another one) for white
Gaussian noise with the intensityD and high barriers (∆U/D ≫ 1) is estimated by well-known Kramers raterK [23]

rsmooth
sw = rK =

ω0ωb

2πγ
exp(−∆U/D) (8)
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Figure 2: (Color online) (a) Energy barrier height∆U and (b) spacing∆x between the potential energy minima vs. parameterβL for RF SQUIDs
with ScS and SIS Josephson junctions.

for parabola wells and smooth parabola barrier, which is almost the case for SIS-SQUID potential. Hereω0 =

[U ′′
Φ

(xbottom)/C]1/2 andωb = [U ′′
Φ

(xtop)/C]1/2 are angular frequencies of small-amplitude oscillations near the bottom
of the well and the top of the barrier, correspondingly, defined by the potential curvature in these points;γ is the
damping constant.

Meanwhile, for parabola wells and sharp barrier that is close to the ScS SQUID potential shape, especially at low
non-linearity parameterβL, the switching time is given by formula (5.4) in [24], which in our terms will read as:

rsharp
sw =

√
π
γ(∆x)2

8∆U

√

D
∆U

exp(−∆U/D) (9)

For the thermal noise,D = kBT . In this work we do not presume any specific nature of the noise, however,
considering it white Gaussian. The sole limitation we impose is setting an upper cut-off frequencyfc for the noise
band which does not exceed the reversal time of the flux relaxation in the loop 1/τL = R/L to provide the adiabatic
mode for the SQUID operation. Previous estimations [8, 15] following from the numerical simulation show that
a ”reasonable” value forfc can be chosen so that its further increase does not practically affect the results of the
calculations. Usuallyfc ∼ (103−104) fs is high enough wherefs is the signal frequency. Adding small periodic signal
with frequencyfs to the external fluxΦe on the noise background enables stochastic resonance dynamics of a particle
in the bistable potential when the SR condition fulfils:

rsw ≈ 2 fs (10)

For typical experimental parameters,L ≈ 3·10−10 H, C ≈ 3·10−15 F,R ≈ 1−102 Ohm,Ic ≈ 10−5−10−6 A andβL =

0.1−3, we estimate McCumber parameter accounting for the capacitance to be low enough:βC = 2πR2IcC/Φ0 < 1. In
this case (aperiodic, or overdamped, oscillator) the motion is non-oscillatory, and therefore the first term with second
derivative in Equation 1 can be neglected. Note that a contact with resistanceR ∼ 100 Ohm is close to ASC since
the number of conducting channels (atomic chains) is small but the considered situation, even at low temperatures,
remains classical one because of strong dissipation. The low signal frequencyfs ∼ 1− 10 Hz<< 1/τL and the upper-
limited noise frequency band (quasi-white noise) with cut-off frequencyfc ∼ 104 Hz << 1/τL make the problem
adiabatic, as noted above, and allows to attribute all time dependence to the potential energy in Equation (1):

τL
dx
dt
+
∂U(x, t)
∂x

= 0 (11)

For the case of an ScS contact, by substituting Equation (6) in Equation (11), we get

dx
dt
=

1
τL
{xe(t) − x +

βL

2π
sin(πx) · sgn[cos(πx)]}, (12)

and for an SIS junction, taking into account Equation (7), Equation (11) reads as
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dx
dt
=

1
τL

[xe(t) − x +
βL

2π
sin(2πx)] (13)

The external magnetic fluxxe(t) is the sum of the fixed bias fluxxdc = 0.5, the useful signalxac = a sin 2π fst and
the noise fluxxN . Theoretically, the noise is assumed to beδ -correlated, Gaussian-distributed, white noise:xN = ξ(t) ,
〈ξ(t)ξ(t − t′)〉 = 2Dδ(t− t′). During numerical simulation it is emulated by a random-number generator with Gaussian
distribution, varianceD = σ2 and repetition period of about 290. When solving the equation in a finite-difference
approximation, the sampling frequency is 216 which is equivalent to noise frequency band∼ 32 kHz. This allows us
to consider the noise to be quasi-white for stochastic amplification of the signals with frequencyfs = 1− 10 Hz.

Equations (12) and (13) were solved by Heun algorithm modified for stochastic equations [25, 26]. 10 to 50
runs were made to obtain 16-second time series with different noise realizations. They underwent then fast Fourier
transform (FFT), and the resulted spectral densitiesSΦ(ω) of output signal (internal flux in the loop) were averaged.
In this work we use the spectral amplitude gain of the weak periodic signal as the SR quantifier defined as the ratio of
spectral densities of output and input magnetic fluxes:

k(ω) = S 1/2
Φout(ω)/S 1/2

Φin(ω) (14)

3. Numerical simulation results and discussion

The energy barrier height∆U, as follows from Equations (6) and (7), is determined byβL and is different for the
cases of ScS and SIS junctions (Fig. 2a). As can be seen, in theloop with SIS junction (referred to as SIS SQUID)
the two-well potential with two metastable states needed toprepare conditions for stochastic amplification of a weak
information signal exists only atβL > 1 while it is finite for anyβL in the ScS SQUID. Both∆U andD , being in
exponent, are the core parameters to define switching ratersw (8), (9). For a specified frequency of a weak harmonic
signal, the SR condition (10) requirement can be met by increasing the noise power. Meanwhile, the amplitude gain
k(ω) of the small signal, according to the two-state theory [27], should depend on spacing∆x between the local
minima of potential energyU(x).

k(ω) =
rsw (∆x)2

2D (4r2
sw + ω

2)1/2
(15)

Fig. 2b shows∆x as a function ofβL for the ScS and SIS SQUIDs. It is obvious from Fig. 2b that boththe spacing
∆xS cS between the potential energy minima and the barrier height∆US cS tend to zero remaining finite whenβL → 0.
In contrast, for SIS SQUIDs∆US IS and∆xS IS vanish atβL = 1.

Calculation of the small-signal gain with the same barrier height for both potentials,∆US cS = ∆US IS , show that
maximal gain for SIS SQUID is roughly twice higher than that of a SR amplifier based on ScS SQUID (Fig. 3a).

Maximal gain is obtained when SR condition (10) is met. Aftersubstituting (10) in (15) the gain becomes a
function of only∆x and D. However, the obtained difference in the gain is less than could be derived from only
the ratio of∆xS cS to ∆xS IS because the gain maxima correspond to different optimal noise intensitiesDm = σ

2
m

which depend on the potential shapes modifying switching rate rsw. Usingσm from Fig.3a to calculate gain ratio by
formula (15), we getkS IS / kS cS = 2.15 versus experimental value of 2.37. This is good enough taking into account the
simplicity of the two-state model. Fig.3b illustrates the alternative case when the minima spacing for both potentials
are equal while the barriers are different. Unexpectedly, there is no agreement here between simulated and calculated
gain ratios. Nevertheless, it should be stressed that despite lower gain in ScS SQUID, the SR amplification in it is
possible at very small critical currents (typical for ASCs)and low noise level (that may correspond to thermodynamic
fluctuations at ultralow temperatures). Meanwhile, there is no amplification of weak informational signals in SIS
SQUIDs for allβL < 1.

Fig. 4 displays a set of SR gain in ScS SQUID vs. noise intensity curves for severalβL < 1 and corresponding
amplitude Fourier spectra of output signal normalized by Fourier spectra of input signal thus showing the spectral
amplificationk( f ). It is seen that, for sine signal of small amplitude (a = 10−3) the system response remains linear
even for smallβL = 0.1 that is indicated by no sign of third harmonic in the output spectrum (even harmonics are
absent due to the potential symmetry). The latter case corresponds to millikelvin temperature range for real devices.
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Figure 3: (Color online) Amplitude gaink of sine signal in RF SQUIDs with ScS and SIS junctions vs. noise amplitudeσ = D1/2. βL parameters
are chosen so that (a) the potential barriers∆U in both SQUIDs were equal; (b) the minima spacing∆x in both SQUIDs were equal. Signal
amplitudea = 0.001 and frequencyfs = 10 Hz

.

Although it is obvious that the detected spectrum is clearerat lower temperature because of smaller noise background,
additionally the signal gain also turns out to be high enoughatβL = 0.1.
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Figure 4: (Color online) (a) Amplitude gaink of sine signal in RF SQUID with ScS junction for variousβL = 0.1, 0.3, 0.5 vs. noise amplitude
σ = D1/2. (b) Spectral gainsk( f ) for the same values ofβL as in panel (a) and noise levels corresponding to the peak of each curve in panel (a).
Signal amplitudea = 0.001 and frequencyfs = 10 Hz.

The effect of degradation of stochastic amplification in ScS SQUID with the signal amplitude increase is shown in
Fig. 5. The higher the signal amplitude, the smaller the signal gain, while third harmonic (and other odd ones) in the
output Fourier spectrum become visible fora = 3 · 10−3 and 10−2 (even harmonics are absent because of the potential
symmetry), thus the amplification becomes markedly non-linear. Since signal-to-noise ratio (SNR) enhancement
in output signal is hardly expected for moderate-to-subthreshold signals on the background of rather weak noise
(associated with smallβL) [28], the linear amplification is more suitable in this case. Therefore, the weakest signals
are stochastically amplified by ScS SQUID most effectively.

The maximum stochastic gain for a weak (a = 0.001 ) low-frequency (fs = 10 Hz) sine signal in both types of
SQUIDs is presented in Fig. 6a vs. the main SQUID parameterβL = 0.1− 3. Formal divergence of the signal gain
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.

obtained for SIS SQUID atβL = 1 will be smeared by noise in real experiments. Besides, as anadditional analysis
shows, the non-linear signal distortions drastically riseand the dynamic range narrows in the region in the vicinity
of βL = 1. For the ScS SQUID, the dependence of the signal SR gain on the main parameterβL has no distinctive
features within a wide range ofβL includingβL < 1. The narrowing of the dynamic range and rise of the non-linear
distortion is observed atβL << 1 alike SIS-SQUID-based amplifiers nearβL = 1 due to vanishingly small potential
barrier. Fig. 6b presents the optimal noise levels where maximum gain is reached as a function of parameterβL. As
expected, the optimal noise levels depend mostly on the height of the barrier between the two metastable current states.
It follows from the obtained results that in small signal approximation when the response is supposed to be linear, SIS
SQUIDs should be used as SR amplifiers atβL ≥ 1, while ScS SQUIDs are suitable for small critical currentsand/or
inductances associated with flux qubits, that is forβL < 1.
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Figure 6: (Color online) (a) Maximum gainkmax and (b) optimal noise amplitudeσm for ScS and SIS RF SQUIDs vs. parameterβL. The signal
frequencyfs = 10 Hz and amplitudea = 0.001.
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4. Conclusion

In the given work the noise-induced stochastic amplification of weak informational signals at low temperatures
T << Tc in RF SQUIDs containing ScS contacts (QPCs) is considered. It is shown that SR amplification of weak
sine signals emerges at any, vanishingly small, value of parameterβL. This is due to an unusual shape of the potential
barrier between the two metastable states with a singularity in its top and always finite height. It should be noted that
there is no noise-induced re-normalization of the potential energy of ScS SQUID because the noise is band-limited.
That justifies the use of the zero-temperature approximation.

Taking into account quantum corrections to the decay rate ofthe metastable current states in SR [29] can lead
to essential modification of the dynamics and rise of SR gain.For example, as reported in paper [30], under some
conditions the presence of the noise could enhance quantum correlation in superconducting flux qubits. With temper-
ature rise up toTc, SR dynamics of RF SQUID with QPC will change due to temperature dependence of the potential,
US cS (T ) [31], tending, apparently, to that of the SIS SQUIDs.

It is worth noting that a discontinuous (”saw-like”) current-phase relationship atT = 0 is also a characteristic of
other types of Josephson contacts with direct conductance,e.g., 4-terminal microbridge junction and superconductor-
normal metal-superconductor (SNS) junction that results in a singularity on the top of the barrier of the potential of
such junctions [32, 33] and hence their stochastic dynamicsshould be similar to the behavior of RF SQUID with the
considered ScS contact.

In addition, we would like highlight one important feature of SR. Even in the case when the SR effect in SQUID
is considered as ”stochastic filtration” [34], and no enhance in signal-to-noise ratio is anticipated as compared to its
”input” value [28], the SR effect has almost self-evident advantage over other amplification methods because it works
directly inside the sensor, thus providing a kind of ”first aid” to signal detection that we could call ”Just-In-Place
Amplification” unlike widely spread ”On-Chip” technical solutions where amplification is carried out in a separate
unit situated near the sensor on a common substrate.
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