61 research outputs found

    CEM03.03 and LAQGSM03.03 Event Generators for the MCNP6, MCNPX, and MARS15 Transport Codes

    Full text link
    A description of the IntraNuclear Cascade (INC), preequilibrium, evaporation, fission, coalescence, and Fermi breakup models used by the latest versions of our CEM03.03 and LAQGSM03.03 event generators is presented, with a focus on our most recent developments of these models. The recently developed "S" and "G" versions of our codes, that consider multifragmentation of nuclei formed after the preequilibrium stage of reactions when their excitation energy is above 2A MeV using the Statistical Multifragmentation Model (SMM) code by Botvina et al. ("S" stands for SMM) and the fission-like binary-decay model GEMINI by Charity ("G" stands for GEMINI), respectively, are briefly described as well. Examples of benchmarking our models against a large variety of experimental data on particle-particle, particle-nucleus, and nucleus-nucleus reactions are presented. Open questions on reaction mechanisms and future necessary work are outlined.Comment: 94 pages, 51 figures, 5 tables, invited lectures presented at the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, February 4-8, 2008, ICTP, Trieste, Italy; corrected typos and reference

    Conoscopic patterns in photonic band gap of cholesteric liquid crystal cells with twist defects

    Full text link
    We theoretically investigate into the effects of the incidence angles in light transmission of cholesteric liquid crystal two-layer sandwich structures with twist defects created by rotation of the one layer about the helical axis.The conoscopic images and polarization resolved patterns are obtained for thick layers by computing the intensity and the polarization parameters as a function of the incidence angles.In addition to the defect angle induced rotation of the pictures as a whole, the rings of defect mode resonances are found to shrink to the origin and disappear as the defect twist angle varies from zero to its limiting value and beyond.Comment: revtex4, 7 pages, 4 figure

    Fine Splitting of Electron States in Silicon Nanocrystal with a Hydrogen-like Shallow Donor

    Get PDF
    Electron structure of a silicon quantum dot doped with a shallow hydrogen-like donor has been calculated for the electron states above the optical gap. Within the framework of the envelope-function approach we have calculated the fine splitting of the ground sixfold degenerate electron state as a function of the donor position inside the quantum dot. Also, dependence of the wave functions and energies on the dot size was obtained

    Shape of crossover between mean-field and asymptotic critical behavior in a three-dimensional Ising lattice

    Full text link
    Recent numerical studies of the susceptibility of the three-dimensional Ising model with various interaction ranges have been analyzed with a crossover model based on renormalization-group matching theory. It is shown that the model yields an accurate description of the crossover function for the susceptibility.Comment: 4 pages RevTeX + 3 PostScript figures. Uses epsf.sty and rotate.sty. Final version; accepted for publication in Physics Letters

    Effective index of refraction, optical rotation, and circular dichroism in isotropic chiral liquid crystals

    Get PDF
    This paper concerns optical properties of the isotropic phase above the isotropic-cholesteric transition and of the blue phase BP III. We introduce an effective index, which describes spatial dispersion effects such as optical rotation, circular dichroism, and the modification of the average index due to the fluctuations. We derive the wavelength dependance of these spatial dispersion effects quite generally without relying on an expansion in powers of the chirality and without assuming that the pitch of the cholesteric PP is much shorter than the wavelength of the light λ\lambda, an approximation which has been made in previous studies of this problem. The theoretical predictions are supported by comparing them with experimental spectra of the optical activity in the BP III phase.Comment: 15 pages and 7 figures. Submitted to PR

    Enhancement of fusion rates due to quantum effects in the particles momentum distribution in nonideal media

    Full text link
    This study concerns a situation when measurements of the nonresonant cross-section of nuclear reactions appear highly dependent on the environment in which the particles interact. An appealing example discussed in the paper is the interaction of a deuteron beam with a target of deuterated metal Ta. In these experiments, the reaction cross section for d(d,p)t was shown to be orders of magnitude greater than what the conventional model predicts for the low-energy particles. In this paper we take into account the influence of quantum effects due to the Heisenberg uncertainty principle for particles in a non-ideal medium elastically interacting with the medium particles. In order to calculate the nuclear reaction rate in the non-ideal environment we apply both the Monte Carlo technique and approximate analytical calculation of the Feynman diagram using nonrelativistic kinetic Green's functions in the medium which correspond to the generalized energy and momentum distribution functions of interacting particles. We show a possibility to reduce the 12-fold integral corresponding to this diagram to a fivefold integral. This can significantly speed up the computation and control accuracy. Our calculations show that quantum effects significantly influence reaction rates such as p +7Be, 3He +4He, p +7Li, and 12C +12C. The new reaction rates may be much higher than the classical ones for the interior of the Sun and supernova stars. The possibility to observe the theoretical predictions under laboratory conditions is discussed

    Crossovers in Unitary Fermi Systems

    Full text link
    Universality and crossover is described for attractive and repulsive interactions where, respectively, the BCS-BEC crossover takes place and a ferromagnetic phase transition is claimed. Crossovers are also described for optical lattices and multicomponent systems. The crossovers, universal parameters and phase transitions are described within the Leggett and NSR models and calculated in detail within the Jastrow-Slater approximation. The physics of ultracold Fermi atoms is applied to neutron, nuclear and quark matter, nuclei and electrons in solids whenever possible. Specifically, the differences between optical lattices and cuprates is discussed w.r.t. antiferromagnetic, d-wave superfluid phases and phase separation.Comment: 50 pages, 15 figures. Contribution to Lecture Notes in Physics "BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge

    Cross-Correlation Earthquake Precursors in the Hydrogeochemical and Geoacoustic Signals for the Kamchatka Peninsula

    Full text link
    We propose a new type of earthquake precursor based on the analysis of correlation dynamics between geophysical signals of different nature. The precursor is found using a two-parameter cross-correlation function introduced within the framework of flicker-noise spectroscopy, a general statistical physics approach to the analysis of time series. We consider an example of cross-correlation analysis for water salinity time series, an integral characteristic of the chemical composition of groundwater, and geoacoustic emissions recorded at the G-1 borehole on the Kamchatka peninsula in the time frame from 2001 to 2003, which is characterized by a sequence of three groups of significant seismic events. We found that cross-correlation precursors took place 27, 31, and 35 days ahead of the strongest earthquakes for each group of seismic events, respectively. At the same time, precursory anomalies in the signals themselves were observed only in the geoacoustic emissions for one group of earthquakes.Comment: 21 pages, 5 figures, 1 table; to be published in "Acta Geophysica". arXiv admin note: substantial text overlap with arXiv:1101.147
    • …
    corecore