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Effective index of refraction, optical rotation, and circular dichroism in isotropic
chiral liquid crystals

D. Lacoste,1 P. J. Collings,2 and T. C. Lubensky1
1 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

2 Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081
~Received 15 October 2001; published 5 March 2002!

This paper concerns optical properties of the isotropic phase above the isotropic-cholesteric transition and of
the blue phase BP III. We introduce an effective index, which describes spatial dispersion effects such as
optical rotation, circular dichroism, and the modification of the average index due to the fluctuations. We derive
the wavelength dependence of these spatial dispersion effects quite generally without relying on an expansion
in powers of the chirality and without assuming that the pitch of the cholestericP is much shorter than the
wavelength of the lightl, an approximation that has been made in previous studies of this problem. The
theoretical predictions are supported by comparing them with experimental spectra of the optical activity in the
BP III phase.

DOI: 10.1103/PhysRevE.65.031717 PACS number~s!: 61.30.Mp, 42.70.Df, 78.20.Ek

I. INTRODUCTION

Chirality in liquid crystals produces a fascinating variety
of phases, such as the blue phases. Three blue phases~BPs!
designated BP I, BP II, and BP III have been identified and
their structures are now well understood. BP I and BP II
exhibit long-range periodic order at the half micron scale and
Bragg scatter visible light. For these reasons, the optical
study of blue phases is an active field of research, with a
particular emphasis on spatial dispersion effects such as the
optical activity.

The first experiments on the optical activity in the pretran-
sitional region of the isotropic phase above the isotropic-
cholesteric transition were carried out by Cheng and Meyer
@1#. Using a general formulation due to de Gennes, they cal-
culated and confirmed experimentally that the pretransitional
optical activity depends on the temperature as (T2T* )20.5,
where T* is the metastability temperature of the isotropic
phase. Two years later, Brazovskii and Dmitriev developed
the first complete theory of phase transitions in cholesteric
liquid crystals, and they predicted the existence of the blue
phases@2#. The optical activity in the pretransitional region
was derived using this approach by Dolganovet al. @3#. At
this time, a detailed Landau theory of the cholesteric blue
phases was obtained by Hornreich and Shtrikman, who also
provided an outstanding study of the light scattering in the
blue phases including a treatment of the polarization of the
light, based on the formalism of the Mu¨ller matrices@4,5#.
Bensimon, Domany, and Shtrikman studied the optical activ-
ity in the pretransitional regime and in the blue phases@6#,
confirming and extending the work of Dolganov. In their
paper, the blue phase BP III was considered as an amorphous
polycrystalline structure distinct from the isotropic phase,
and their treatment of the optical activity relied on the long
wavelength approximation. On the experimental side, the
wavelength dependence of the optical activity in the blue
phases was measured by Collings and co-workers@7,8#. The
structure of BP III still remained mysterious until experi-
ments clearly showed a continuous transition between BP III

and the isotropic phase@9,10# and the existence of a critical
point terminating a line of coexistence of the two phases
@11#. In the same year, Lubensky and Stark developed a
theory for the isotropic to BP III transition with a chiral
liquid-gas-like critical point@12#, which was extended to in-
clude scaling theory in Ref.@13#. Very recently, there has
been a renewal of interest in the study of the blue phases
with the discovery of the smectic blue phases@14#, exhibit-
ing isotropic–BP III coexistence terminating at a critical
point @15#.

In Sec. II of this paper, we introduce an effective index
for the propagation of light in the isotropic phase and in BP
III, which contains pretransitional effects such as the optical
activity and the circular dichroism. In Sec. III, we present a
derivation of these effects in a particular limit@6#. In Sec. IV,
we make a digression on the optical properties of periodic
chiral media for comparison with the case of nonperiodic
chiral media. By evaluating our weak-scattering expression
for the optical dielectric constant tensor in a cholesteric
phase, we find the well-known de Vries formula, which de-
scribes the optical activity of light propagating in this me-
dium along the pitch axis. In Sec. V we come back to iso-
tropic chiral media and obtain the optical activity for
arbitrary wavelength and chirality. This approach is different
in that it is general, not limited to the long wavelength ap-
proximation, and applicable, in particular, to the resonant
region where the wavelength of the light is of the order of
the pitch of the cholesteric, a regime that has not been con-
sidered in detail in previous studies. In the long wavelength
approximation, we collect contributions to the optical activ-
ity up to order (P/l)4. Though various contributions up to
this order have appeared separately in the literature
@2,3,6,16# and very recently in Ref.@17#, these references are
not fully consistent with each other. We, therefore, think that
it is important to collect and discuss all these contributions in
one place. We then generalize our method and obtain the
wavelength dependence of the circular dichroism and of
the symmetric part of the index, which to our knowledge
have not appeared in the literature and have never been mea-
sured. Finally in Sec. VI, our theoretical predictions are sup-
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ported by experimental spectra of the optical activity for dif-
ferent values of the chirality in the BP III phase@18#. The
agreement between theory and experiments is very good. Ex-
periments confirm the presence of a broad maximum in the
magnitude of the optical activity when the wavelength is of
the order of the pitch. This feature is the pretransitional sig-
nature in isotropic chiral media of the divergence arising
from the long-range periodicity of the cholesteric phases is
BP I and BP II.

II. THEORY

Let e be the relative complex-valued dielectric constant of
the cholesteric liquid crystal in the isotropic phase or in the
blue phase BP III with respect to the average dielectric con-
stant

e i j ~r !5d i j 1de i j ~r !, ~1!

wherede i j (r ) is a relative anisotropic small local fluctuation
of the dielectric constant:̂ de i j (r )&50, ude i j (r )u!1, and
^•••& denotes a thermal average. To simplify the notations,
we take the velocity of light in the medium to be 1, and we
do not indicate explicitly the dependence of the dielectric
constant on the frequency of light in the medium denotedv.
Maxwell equations in the absence of sources lead to the fol-
lowing Helmholtz equation for the electric fieldE(r ,v):

“3@“3E~r ,v!#5v2e•E~r ,v!. ~2!

From Eq.~2!, we deduce that the propagation of light in a
homogeneous medium in the absence of fluctuations is char-
acterized by the following Green’s function:

Gi j
0 ~k,v!5

D i j

2v21k22 i01
2

kikj

v2k2
, ~3!

where D i j 5d i j 2kikj /k2 is a projector on the space trans-
verse to the wave vectork. The first term of Eq.~3! is the
transverse part describing traveling wave solutions of Max-
well equations and the second term is the longitudinal part
that describes nonpropagating modes. The scattering by the
randomly fluctuating part of the dielectric functionde i j (r ) is
described by the following 4-rank tensor@19#:

Bi jkl ~r !5v4^de ik~r !de j l ~0!&. ~4!

Unless specified otherwise, we consider in this paper only
nonabsorbing media in which the tensorBi jkl (r ) is real. The
averaged Green’s functionG(k,v) follows from Dyson’s
equation,

G215~G0!212S. ~5!

In the weak-scattering approximation, the tensorS can be
calculated using the following equation@20#:

S i j ~k,v!5E d3q

~2p!3
Bi jkl ~q!Gkl

0 ~k2q,v!, ~6!

in terms of the Fourier transformBi jkl (q) of the tensor de-
fined in Eq.~4!. Note that Eq.~6! is general and applies also
to periodic media for whichBi jkl (q) hasd-function peaks in
which case this equation takes the form of a discrete sum
over Bloch waves@21#.

The general form ofS(k,v) in an isotropic chiral me-
dium is

S i j ~k,v!5S0~k,v!d i j 1
i e i j l kl

v
S1~k,v!1S2~k,v!

kikj

v2
.

~7!

If k denotes a chiral parameter of the medium,S i j (k,v,k)
satisfy the general symmetry relation~valid in any medium
in the absence of a magnetic field@22#!

S i j ~k,v,k!5S j i ~2k,v,k!, ~8!

and the chiral symmetry relation

S i j ~k,v,k!5S i j ~2k,v,2k!. ~9!

The chiral symmetry relation implies thatS0 andS2 are odd
functions of k and thatS1 is an even function ofk. The
dispersion relation for light propagation modified by fluctua-
tions is obtained from det@G0

21(k,v)2S(k,v)#50. In a ba-
sis composed of two vectors perpendicular tok, the diagonal
elements ofS are equal toS0, and the off-diagonal elements
are6 ikS1 /v. In such a basis, the last term in Eq.~7! van-
ishes, and we find

v22k22S0~k,v!56
k

v
S1~k,v!. ~10!

This relation definesk1(v) and k2(v), which are respec-
tively the dispersion relation for right and left circularly po-
larized light. Writingk5v1dk and expanding Eq.~10! to
first order indk, one finds

dk65
S0~v,v!6S1~v,v!

22v7S1~v,v!/v7]S1 /]k2]S0 /]k
. ~11!

To first order in S, this gives k6(v)5v2@S0(v,v)
6S1(v,v)#/2v. The optical activityF is the angle through
which the polarization vector of linearly polarized light has
turned when traversing a medium of lengthL, thus F
5Re@k1(v)2k2(v)#L/2. Similarly the circular dichroism,
measuring the difference in transmission from left and right
circularly polarized waves isC5Im@k1(v)2k2(v)#L/2.
To first order inS, we have, therefore,

F5Re
S1~v,v!L

2v
, ~12!

and

C5Im
S1~v,v!L

2v
. ~13!
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Note that these relations are valid at arbitrary frequencyv
when Eq.~6! is valid. The fluctuations also modify the sym-
metric part ofS, i.e., the average dielectric constant. The
relative change of the average dielectric constant within the
same approximation isDe052S0(v,v)/v2.

We use in this paper the form of the Landau–de Gennes
free energy of Ref.@5#,

F5V21E d3r H 1

2
@ae i j

2 1c1e i j ,l
2 1c2e i j ,ie l j ,l22dei j l e ine jn,l #

2be i j e j l e l i 1g~e i j
2 !2J , ~14!

wheree i j ,l5]e i j /]xl and ei jk is the Levi-Civita fully anti-
symmetric tensor. The coefficienta is proportional to the
reduced temperaturet, whereas all other coefficients are as-
sumed to be temperature independent. As explained in Refs.
@5,12#, it is convenient to write this free energy in dimension-
less form, by expressing all lengths in units of the order
parameter correlation lengthjR5(12gc1 /b2)1/2. The chiral-
ity is thenk05qcjR whereqc5d/c1 is the wave number of
the cholesteric phase that determines the pitchP54p/qc .
The reduced temperature is defined byt5(T2TN* )/(TN

2TN* ) where TN* is the temperature corresponding to the
limit of metastability of the isotropic phase@23# and r
5c2 /c1 is the ratio of the two Landau coefficients, which is
of order 1. Using the Gaussian approximation for the fluc-
tuations@6#, the dielectric anisotropy correlation tensor de-
fined in Eq.~4! takes the following form:

Bi jkl ~q!5v4 (
m522

m52

Gm~q!Tik
m~ q̂!Tjl

2m~ q̂!, ~15!

whereGm(q) is evaluated from the equipartition theorem

Gm~q!5
kBT

t2mkq1q2F11
r

6
~42m2!G . ~16!

Note thatq denotes the dimensionless wave vector measured
in units of 1/jR and that Eq.~16! has been corrected from the
expression given in Ref.@12# ~the factorr/4 has been re-
placed byr/6 in agreement with Ref.@5#!. In Eq. ~16!, the
parameterk represents an effective chirality at the tempera-
ture t. Except at the critical point,k is different fromk0, and
the differencek2k0 is proportional to the order parameter
of the BP III isotropic phase transition@12#. The indexm in
Eq. ~15! denotes the five independent modes of the symmet-
ric and traceless tensorde i j (r ). Note that Eq.~16! is equiva-
lent to

kBT

Gm~q!
5t2mkq1Dmq25Dm~q2qm!21tm , ~17!

with Dm511(r/6)(42m2),qm5mk/2Dm ,tm5Dmqm
2 , and

tm5t2tm . We have introducedtm , the transition tempera-
ture of the modem, andqm , the wave vector that minimizes

the energy of the modem. Denoting r 511r/2, we have
explicitly t15t215k2/4r and q152q215k/2r for the
modes61;t25t225k2 and q252q225k for the modes
62;t050 andq050 for the mode 0. A plot ofGm(q) as a
function ofq is shown in Fig. 1 for the modesm50,1, and 2,
a chirality k50.2 and a temperaturet50.05. This particular
plot shows the dominance of the modem52, because of the
choice of the temperaturet.t2.t1 and t close tot2. More
generally it can be shown that ast→tm ,Gm(q) becomes a
Dirac function localized atq5qm .

The tensorTi j
m introduced in Eq.~4! are eigenvectors of

the tensorBi jkl (q), with eigenvaluesv4Gm(q) @2#. These
tensors are

T0~ q̂!5
1

A6
~3q̂q̂21!, ~18!

T1~ q̂!5
1

A2
@ q̂m~ q̂!1m~ q̂!q̂#5T21~ q̂!* , ~19!

T2~ q̂!5m~ q̂!m~ q̂!5T22~ q̂!* , ~20!

with m5(1/A2)(ĵ1 i ĥ) and (ĵ,ĥ,q̂) forming a right-handed

system of orthonormal vectors. We choose the vectorsĵ and

ĥ such thatĵ(2q̂)5 ĵ(q̂) and ĥ(2q̂)52ĥ(q̂), so that

m~2q̂!5m~ q̂!* . ~21!

FIG. 1. AmplitudeGm(q)/kBT of the dielectric anisotropy cor-
relation tensor as a function of the dimensionless wave vectorq for
the modesm50,1, and 2.k is 0.2, r51, and the normalized tem-
perature ist50.05.
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III. DISPERSION EFFECTS IN THE LIMIT k\0

In this section the optical activity and the circular dichro-
ism of isotropic chiral media is derived using the method of
Ref. @6#. This method gives the optical activity as an expan-
sion in powers ofv for k→0. As we shall see later, this limit
does not correspond to the physical limit of the optical ac-
tivity in the long wavelength approximation, but we present
this derivation here for pedagogical purposes. The physical
limit of the optical activity in the long wavelength approxi-
mation together with an exact analytical expression for the
optical activity at arbitrary wavelength will be presented in
Sec. V. Following Ref.@6#, we use an expansion to first order
in k of the Green’s function

Gi j
0 ~k2q,v!.Gi j

0 ~q,v!2kl

]Gi j
0 ~q,v!

]ql
, ~22!

with

]Gi j
0 ~q!

]ql
52

qiD j l 1qjD i l

v2~v22q21 i01!
1

2qlD i j

~v22q21 i01!2
.

~23!

Using this expression in Eq.~6!, we obtainS1(k→0,v),
which was defined in Eq.~7!. After integration overq, we
obtain

S1~k→0,v!

5E dqq2
v3q@2V1~q!v21V1~q!q222 V2~q!v2#

12p2~v22q21 i01!2
,

~24!

where Vm(q)5Gm(q)2G2m(q). In the integration of Eq.
~24!, we take the upper limit of integration overq to be
infinity. The continuous model used in this paper is valid
only up to wave vectorsqmax52p/a, wherea is an intermo-
lecular distance, but in the case of Eq.~24!, the integral is not
sensitive to the value ofqmax as discussed in Refs.@3,12#.

Expanding Eq.~24! in powers ofv, and integrating over
q, we obtain the complex-valuedS1(k→0,v) in powers of
v for k→0. Using Eqs.~12! and~13!, the optical activity is
in this limit

F

L
5

k v2kBT

48r 3/2At1p
1S 1

4Ar t1
3/2

2
1

t2
3/2D v4kBTk

12p
~25!

and the circular dicroism

C

L
5S 2

1

t2
2

1
1

6 t1
2D v5kBTk

4p
. ~26!

Deriving Eqs.~25! and ~26!, we have assumed thatk!At2

andk!A4r t1, and the equations are valid for temperatures
such thatt1,t2,t. Within these approximations, the optical

rotation and circular dichroism are proportional to the chiral-
ity k. The next order will be of orderk3 as imposed by the
symmetry relation of Eq.~9!.

IV. de VRIES FORMULA

We present in this section a derivation of the de Vries
formula, which is the well-known solution of Maxwell’s
equations for light propagating in a cholesteric liquid crystal
along the pitch axis@27#. The reason of this digression into
the optics of periodic chiral media will become clear in the
following section, where we explore the relation between
optical activity in isotropic chiral liquid crystals and the de
Vries formula for the cholesteric phase. We shall take thez
axis to be the helical axis of the cholesteric phase and
(êx ,êy ,êz) to be a right-handed frame. In the cholesteric
phase, the order parameter, the anisotropy in the dielectric
constant, is

de i j 5eaS ninj2
1

3
d i j D , ~27!

where ea5e i2e' and n5cos(kz/2)êx1sin(kz/2)êy . Using
Eq. ~27! and the definitions~18!–~20!, it is simple to show
that

de i j ~r !5de i j ~z!

5
ea

2
@eikzTi j

22~ êz!1e2 ikzTi j
2 ~ êz!#2

ea

A6
Ti j

0 ~ êz!.

~28!

From this, the tensorBi jkl (r )5Bi jkl (z) defined in Eq.~4!
can be constructed. To calculate its Fourier transform
Bi jkl (q), it is convenient to use a spherical coordinate system
with q5q(sinu cosf,sinu sinf,cosu),

Bi jkl ~q!

5v4E dxexp@ iq sinu cosfx#E dyexpF iq sinu sinfy

3E dzexp@ iq cosuz#de ik~z!de j l ~0!, ~29!

which can be simplified using Eq.~28!

Bi jkl ~q!5
v4ea

2~2p!3

4q2sinu
d~f!d~u!@d~q1k!Tik

22Tjl
2

1d~q2k!Tik
2 Tjl

22#1Ai jkl ~q!,

5
v4ea

2~2p!3

4
@d3~q1kêz!Tik

22Tjl
2

1d3~q2kêz!Tik
2 Tjl

22#1Ai jkl ~q!, ~30!

where Ti j
625Ti j

62(êz) and Ai jkl is a linear combination of

tensors of the formTik
mTjl

m8 with m and m8 being 0,2, or
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22. The Bragg peaks of the cholesteric phase located atq

56kêz correspond to the first two terms of Eq.~30!. Note
that in a periodic medium considered in this section,S1 is a
function of k, whereas in an isotropic medium to be consid-
ered in the following section,S1 is only a function ofk
5uku. In a periodic mediumS1(k,v) can be derived gener-
ally from S i j (k,v) using

S1~k,v!

v
5

@S i j ~k,v!2S i j ~2k,v!#ei j l kl

4ik2
. ~31!

Using Eqs.~6!, ~30!, and~31!, we find

S1~k,v!

v
5

v4ea
2ei jmkm

16ik2
@Gkl

0 ~k1kêz!2Gkl
0 ~2k1kêz!#

3@Tik
22Tjl

2 2Tik
2 Tjl

221Ãi jkl #, ~32!

whereÃi jkl 5(2Tik
221Tik

2 )Tjl
0 /A6. In Eq.~32!, the tensorsT

can be eliminated using Eqs.~18! and ~20!.
We now assumes thatk is along thez axis. In this case, it

is simple to show that the tensorÃi jkl does not contribute to
S1. According to the analysis of Sec. II, to linear order inS
the optical activity and the circular dichroism are propor-
tional to the real and imaginary part ofS1(k,v) evaluated at
uku5v. With these assumptions, Eq.~32! gives

S1~k5vêz ,v!

v
5

v4ea
2k

~k212vk2 i01!~2vk2k21 i01!
.

~33!

The real part of Eq.~33! leads to the de Vries formula@27#

F

L
5

pea
2

16Pl82@12l82#
, ~34!

wherel85l/P andP54pjR /k, the pitch of the cholesteric
phase, and the circular dichroismC is zero within the same
approximations. Note the following features@27#: there is a
dispersion anomaly at the Bragg reflectionl851, but both
Eq. ~34! and C50 break down near the Bragg reflection.
Indeed close to the Bragg reflection, terms of higher order in
S contribute to the optical rotation and the circular dichro-
ism, and for this reason Eqs.~34! andC50 are only valid in
the domaineal!uuPu2lu @28#. The sign of the optical rota-
tion is such that a right-handed helix (k.0) produces a
positive optical rotation~the material is laevogyric! whenl
!P and a negative one~the material is dextrogyric! when
l@P. In the long wavelength limitl!P, the de Vries opti-
cal activity F/L is of orderP3/l4 and depends on the light
propagation direction as opposed to the isotropic–BP III
phases where it is of orderP/l2 and is independent of the
light propagation direction.

V. WAVELENGTH DEPENDENCE OF SPATIAL
DISPERSION EFFECTS IN AN ISOTROPIC CHIRAL

MEDIUM

In this section, we compute the exact wavelength depen-
dance of the optical activity, the circular dichroism and the
average index in an isotropic chiral medium, without relying
on the long wavelength approximation and at any order in
the chiralityk. The method has been pioneered by Dolganov
and co-workers@3,16# in their studies of BP I and BP II, but
this reference does not present all the details of the calcula-
tion. Instead of using the expansion Eq.~22!, which is only
valid in the long wavelength approximation, we calculate
exactlyS1(k,v) from Eqs.~6! and~31!. Separating the con-
tribution from the modesm52 and m51, we obtain~see
Appendix A for details!

S1
m562~k,v!

v
5E d3q

~2p!3

7qv2c2G62~q!~2v22k21k2c2!

2~k212kqc1q22v22 i01!~k222kqc1q22v22 i01!
, ~35!

and

S1
m561~k,v!

v
5E d3q

~2p!3

7qv2G61~q!~c221!~v214k2c22k22q2!

4~k212kqc1q22v22 i01!~2k212kqc2q21v21 i01!
, ~36!

with c5 k̂•q̂. From these equations, the contribution of the
modesm561 andm562 of Eq. ~24! of Sec. III is recov-
ered in the limitk→0. According to the analysis of Sec. II,
however, the correct procedure to obtain the optical activity
and the circular dichroism to leading order inS is from
S1(k,v) evaluated atk5v. As will become clear later, this
does not give the same result, in general, when compared to
Sec. III where the limitk→0 is taken in Eq.~22!. Using k
5v, Eqs.~35! and ~36! can be simplified,

S1
m562~v,v!

v

5E d3q

~2p!3

7v4c2G62~q!~11c2!

2~q12vc2 i01!~q22vc2 i01!q
~37!

and
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S1
m561~v,v!

v
5E d3q

~2p!3

7v2G61~q!

4q
~c221!. ~38!

Note that the integrand of Eq.~38! vanishes forkiq but is
nonzero otherwise. This means that the modesm561 con-
tribute only if the light is propagating off axis or if the pitch
axis and the director are not perpendicular to each other as in
smecticC* for instance. Equation~37! is the analog for iso-
tropic chiral media of the de Vries formula of Eq.~33! valid
for periodic media. The two expressions become identical
with the replacementsc→1 since the light is propagating
along the pitch axis andq→6k according to Eq.~30!. Other
periodic and chiral media such as BP I and BP II can be
treated as the cholesteric phase in Sec. IV. Therefore, we
expect in BP I and BP II a divergence of them562 contri-
bution to the optical activity at the Bragg condition, i.e.,
when the denominator of Eq.~37! is zero, and a change of
sign of the optical activity when crossing this point. There
should be no divergence for the modesm561 as can be
inferred from Eq.~38!.

The recent reference of Hunte and Singh@17# contains a
derivation of the pretransitional optical activity in isotropic
chiral media, which uses a method similar to the one pre-
sented in this paper although the authors have only applied it
to the long wavelength regime. We believe that the authors
have made an error in deriving Eqs.~30! and ~31! of Ref.
@17# that represent, respectively, the contribution of the
modesm561 andm562 to the optical activity. The inte-
grand of Eq.~30! of Ref. @17# should vanish whenc51 as is
true for the integrand of Eq.~38! but it does not, and Eq.~31!
of Ref. @17# should reproduce the de Vries as is true for Eq.
~37! but does not. Therefore, we think that the results of the
derivation of the optical activity in Ref.@17# are incorrect
although the method used is valid.

A straightforward evaluation of Eq.~38! givesS1 for the
modesm561 and for an arbitrary frequencyv,

S1
m561~v,v!

v
5

v2kkBT

24pr 3/2At1

. ~39!

The m561 contribution of the optical activity has a trivial
frequency dependence ofv2. The reason is the following:
the modesm561 have the property thatT61(q̂)•q̂Þ0
whereasT62(q̂)•q̂50 for the modesm562. Using Eq.~6!,
this property implies the following selection rule: them5
61 contribution to the optical activity in the long wave-
length limit is related to the longitudinal part of the Green’s
function ~also called near-field part!, which is the second
term in the right-hand side of Eq.~3!. The only pole of the
near-field Green’s function is atv50, which is the reason
for the absence of a complex wavelength dependence for the
modesm561 and also the reason for which these modes
give the leading contribution to the optical activity at small
v.

Therefore, the most interesting part of the wavelength de-
pendence of the optical activity comes from the modesm5
62. It is also the dominant contribution whent is close tot2.

The integration in Eq.~37! can be done analytically fort
.t2, and the final result~see Appendix B for details of the
derivation! is

Re
S1

m562~v,v!

v
5

2v3

32pAt2

@x1f ~x1!2x3f ~x3!#kBT,

~40!

where x15(k1 iAt2)/2v and x35(2k1 iAt2)/2v. Note
that Eq.~40! agrees with the symmetry relation of Eq.~9!.
We have introduced the function

f ~x!522x22
8

3
1~x1x3!lnS x11

x21D . ~41!

This function tends to28/3 as x→`, is equivalent to
16/15x2 as x→0, and diverges atx561 as a result of the
divergence of the initial expression of Eq.~37!. Equations
~40! and ~41! fully agree with Filev’s results in Ref.@24#
quoted fort250. Similar functions but not exactly identical
functions are present in Refs.@2,16,17,29#, which could in-
dicate misprints or errors regarding this particular point.

A. The long and the short wavelength limits

It is interesting to consider two particular cases of Eq.
~40!, the case wherev!k, which defines the long wave-
length limit and the opposite case wherev@k the short
wavelength limit. In the first case, it is easy to deduce from
Eq. ~40! that ReS1

m562(v,v)/v522v4kkBT/15pAt2t.
Therefore, the optical activity in the long wavelength ap-
proximation for a temperaturet.t2.t1 is

F

kBTL
5

v2k

48pr 3/2At1

2
v4k

15pAt2t
1o~v4!. ~42!

Note that Eq.~42! is not identical with Eq.~25! because
limv→0S(v,v)Þ limk→0S(k,v). Therefore, Eq.~42! is the
physical limit of the optical activity in the long wavelength
approximation whereas Eq.~25! is not. The first term in Eq.
~42! is identical to the expression of Refs.@3,6# for the opti-
cal activity in the pretransitional region. It is associated with
the modesm561 and gives the (T2T1* )20.5 dependence
observed in many experiments. As first noted by Filev, the
modes m562 need to be considered in addition to the
modesm561, in a region very close to the transition in
highly chiral liquid crystals@24#. This is the origin of the
second term in Eq.~42!, whose contribution has the opposite
sign with respect to the contribution from them561
modes. Therefore, there is a competition between these two
modes, which leads to a maximum in the optical activity as a
function of the temperaturet as shown in Fig. 2 for a chiral-
ity k50.2. There has been some debate in the literature con-
cerning the temperature dependence of this term, whether it
should be in (T2T2* )21/2 as predicted in Eq.~42! or in (T
2T2* )23/2 as predicted by other approaches such as the one
that gives Eq.~25!. The very short paper of Ref.@24# did not
provide enough explanations to answer this point, and that of
Ref. @16# also lacks explanations and contains some errors or
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misprints@in particular, in Eq.~4! of Ref. @16##. In Ref. @25#,
Collings and co-workers studied experimentally systems of
high chirality and found good agreement with Filev’s model
with a 1/2 exponent. Unfortunately due to a large number of
fitting parameters, the data could also have been explained
with an exponent23/2 @7#. In a study of the wavelength
dependence of the optical activity in the long wavelength
regime @8#, Collings and co-workers confirmed that the
modesm562 contribute to higher order than the modes
m561 in agreement with Eq.~42!. According to Eq.~42!,
there should be no second order correction inv4 for the
modesm561 with a dependence (T2T1* )23/2, as was in-
correctly predicted in Eq.~25!. This point could not be
proved or disproved experimentally, because quite good fits
to the data can be obtained with or without this term included
as found in Refs.@17,26#. In the short wavelength limitv
@k, we find using Eq. ~40! that ReS1

m562(v,v)/v
5v2kkBT/12pAt2.

B. The resonance region

We now consider the complete wavelength dependence of
the optical activity for the modesm562. In Figs. 3~a! and
3~b!, the optical activity and the circular dichroism are
shown as a function of the wavelength expressed in units of
jR , as calculated with Eqs.~40! and ~B5!. In Fig. 3~a! t2
51023 and in Fig. 3~b! t251025. Note that in all these
figures, a positive value ofk has been chosen corresponding
to a right-handed helix in the cholesteric phase, but that an
opposite optical activity and circular dichroism would have
been found with a left-handed helix. These figures clearly
show a maximum in the magnitude of the optical activity
when the wavelength is equal to the pitchP of the cholesteric
phase, which is about 62.8jR for k50.2 in the case of Fig. 3.
This maximum at this wavelength is the remains in the iso-
tropic phase of the divergence present in the optical activity
of BP I and BP II and in the de Vries formula in Eq.~34!. As
t gets closer tot2 ,G2(q) becomes peaked atq5k, and the
width of the maximum in the magnitude of the optical activ-
ity gets smaller as can be seen by comparing Figs. 3~a! and
3~b!.

FIG. 2. Optical activity F/LkBT, the dark
curve, and circular dichroismC/LkBT, the light
curve as a function of the temperaturet for k
50.2. The wavelength isl5100jR , which cor-
responds to the long wavelength regime where
Eq. ~42! is applicable. The curve of the optical
activity illustrates the competition between the
modesm561 andm562, the latter being re-
sponsible for the decrease~and the change of
sign! of the optical activity whent approachest2.

FIG. 3. The contribution from the modesm562 to the optical
activity F/LkBT, the dark curve, and the circular dichroism
C/LkBT, the light curve, are shown as a function of the wavelength
l for k50.2. ~a! The temperaturet is such thatt251025 and ~b!
t251023. The optical activity is the darker curve and the wave-
length is expressed in units ofjR525 nm.
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C. Circular dichroism and average dielectric constant

These figures also show the circular dichroism, which to
our knowledge has never been discussed theoretically or
measured directly in isotropic chiral media. The absence of
experiments is probably due to the difficulty separating the
contribution from pretransitional fluctuations and the contri-
bution from the absorption bands. According to Fig. 3, cir-
cular dichroism is best observed in the region wherev@k as
it gets very small whenv!k. The curve shown in the figure
is the contribution from pretransitional fluctuations, which is
valid away from absorption bands. Note that experimentally
this circular dichroism translates in the multiple light scatter-
ing regime into a difference in the scattering mean-free paths
for circularly polarized waves. This means that the transport
properties of light in the multiple light scattering regime
should be different for the different states of circular polar-
ization. Such a difference has indeed been observed in static
and dynamic light scattering measurements with circularly
polarized light in the isotropic phase and in BP III@30#.

Finally we have applied our method to the modification of
the average dielectric constant due to the fluctuations. In Sec.
II, we have defined this quantity asDe052S0(v,v)/v2,
whereS0 is the isotropic part ofS. The effect of the fluc-
tuations on the symmetric part of the dielectric constant has
to our knowledge never been calculated or measured in the

pretransitional region. We find that all the five modes con-
tribute to this average dielectric constant. In order to illus-
trate a case where the corrections can be large, we focus here
on the contribution of the modesm562, which as noted
before is dominant whent is sufficiently close tot2. Using
Eqs.~6! and ~7!, we find

S0
m562~v,v!5

v4

2~2p!3E d3q
~11c2!L2~q!

2qvc2q21 i01
, ~43!

with L2(q)5G2(q)1G22(q). After integrating overc and
q, one obtains

ReDe0
m5625

v3

64pAt2k
@g~x1 ,t !2g~x3 ,t !#kBT, ~44!

with

g~x,t !52
t1~2vx!2

v2 F ~11x2!lnS 211x

11x D12xG ,
~45!

and

TABLE I. Parameters of the fit of the optical activity spectra for the different samples: pure cholesteryl
myristate~CM!, pure cholesteryl nonanoate~CN!, and mixtures of CN with 5 and 10 mol % of cholesteryl
chloride ~CC!.

A1 (rad nm2) A2 (nm21) A3 (nm21) A4 (rad nm)

CM 2(1.6260.26) (4.9060.03)31023 (4.2860.99)31024 2(5.5462.11)31023

CN 2(2.4560.38) (3.9960.05)31023 (5.2461.17)31024 2(8.4161.51)31023

CN/5CC 2(2.3160.32) (3.7960.05)31023 (4.4561.00)31024 2(7.2461.31)31023

CN/10CC 2(2.1960.35) (3.4660.06)31023 (3.7661.05)31024 2(5.9161.43)31023

FIG. 4. Real~in dark! and imaginary~in light! part of them5
62 contribution to the average dielectric constantDe0 as a function
of the wavelength that is expressed in units ofjR525 nm. Note
that k50.2 andt251025.

FIG. 5. Measured ORD spectra~points! in the BP III phase as a
function of the wavelength of light in vacuuml0, together with a fit
~solid curve! using Eqs.~39! and~40!. The ORD spectra are shown
for pure cholesteryl myristate~CM! with circles, for pure choles-
teryl nonanoate~CN! with squares, for mixtures of CN with 5 and
10 mol % of cholesteryl chloride~CC! with upper and lower tri-
angles, respectively.
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ImDe0
m5625

v3

4pE0

1

~11x2!xdxL2~2vx!. ~46!

As imposed by the symmetry relation of Eq.~9!, De0 of Eq.
~44! is an even function ofk. In Fig. 4, the real and imagi-
nary part of the average dielectric constantDe0 is shown as
a function of the wavelength, as calculated using Eqs.~44!
and~46! for the modesm562. Similarly to the case of the
optical activity, there is a maximum inDe0 as a function of
the wavelength when the wavelength is of the order of the
pitch of the cholesteric.

VI. THEORY VS EXPERIMENT

In this section, we compare the prediction of our model
with optical rotary dispersion~ORD! measurements, in the
BP III phase taken from Ref.@18#. This reference is the only
one known to us that reports measurements of the optical
activity in the isotropic phase and in BP III beyond the long
wavelength regime. The ORD spectra are measured in the
BP III phase for pure cholesteryl myristate~CM!, pure cho-
lesteryl nonanoate~CN!, and mixtures of CN with small
quantities of cholesteryl chloride~CC!, a compound of op-
posite chirality. The sign of the optical rotation agrees with
Sec. IV: all the samples have a dominant left-handed charac-
ter (k,0 andP,0), and the optical activity is indeed found
to be negative whenl!uPu. The optical activity presents a
broad maximum atl.2P, which grows smaller and
broader and shifts to higher wavelength asuPu is increased.
The curves are fitted with a theoretical expression, which is
the sum of Eq.~39! ~for the modesm561) and Eq.~40!
~for the modesm562), and as can be seen in Fig. 5, the fits
are excellent. The spatial dispersion of the index, which af-
fects the wavelength of the light in the mediuml, is incor-
porated in this fit using the measurements on CN reported in
Ref. @31#. There are four free parameters in this fit,A1 , A2 ,
A3, and A4. These parameters areA15p2kBTjR

3/8At2,
A252k/4pjR51/uPu,A35At2/4pjR , andA45kkBTjR

2p/
12At1r 3/2 so thatx5(6A21 iA3)l, wherel is expressed in
nanometers andA2 andA3 have units of nm21. The values

of these parameters for the different samples are shown in
Table I. The parameterA2 obtained from the fits should be
identical to the absolute value of the inverse pitch of the
cholesteric phase. This is indeed the case as shown in Fig. 6,
where the points correspond to the measurements of Fig. 5
and the solid line is a linear fit that gives a slope of 0.98
60.04 and an intercept of (21.261.6)31024.

VII. CONCLUSION

In this paper, we have discussed spatial dispersion effects
~optical activity, circular dichroism, and average index! for
light propagation in the isotropic–BP III phase, by introduc-
ing an effective index that describes the fluctuations. We
have obtained the wavelength dependence of the spatial dis-
persion effects without relying on the long wavelength ap-
proximation, on which previous studies on this problem have
been based. This approach allows us to discuss the optical
properties in the resonant region when the wavelength of the
light is of the order of the pitch of the cholesteric. In the
vicinity of this point, there is a divergence of the magnitude
of the optical activity in the cholesteric, BP I and BP II
phases and a broad maximum in the case of the BP III and
isotropic phases. These features are confirmed by measure-
ments of spectra of the optical activity in the BP III phase for
different values of the chirality. We have also provided pre-
dictions for the wavelength dependence of the circular di-
chroism and for the symmetric part of the effective index.
We hope that this work will motivate experimentalists to
study the optical properties of periodic and nonperiodic chi-
ral media.
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APPENDIX A: DERIVATION OF S1„k,v…

Using Eqs.~6! and ~31!, we find that

S1~k,v!

v
5

ei jmkm

4ik2 E d3q

~2p!3
@Bi jkl ~2q!

2Bi jkl ~q!#Gkl
0 ~k1q,v!. ~A1!

According to the definitions given in Eqs.~15!, ~19!, and
~20!,

Bi jkl
m52~q!5v4G2~q!Tik

2 ~q!Tjl
22~q!5v4G2~q!mimkmj* ml* ,

~A2!

for the modem52 and

Bi jkl
m51~q!5v4G1~q!Tik

1 ~ q̂!Tjl
21~ q̂!5v4G1~q!~ q̂imk1miq̂k!

3~ q̂ jml* 1mj* q̂l !, ~A3!

for the modem51. Note that for both modes,Bi jkl (Àq)
5Bi jkl* (q), thanks to the convention introduced in Eq.~21!.

Using the relationei j l klmimj* 52 ik•q̂, the m52 contribu-
tion of Eq. ~A1! takes the form

S1
m52~k,v!

v
5

v4

4k2E d3q

~2p!3
G2~q!k•q̂~mk* ml

1mkml* !Gkl
0 ~k1q,v!. ~A4!

Using Eq.~3! and contracting with respect to tensor indices,
this expression reduces to

S1
m52~k,v!

v
5E

0

`v2q2dq

16k2p2

3E
21

1

dcG2~q!
kc@22v21k2~12c2!#

v22k22q222kqc1 i01
.

~A5!

After symmetrizing the integrand of the integral with respect
to c in Eq. ~A5!, according to *dcg(c)5*dc@g(c)
1g(2c)#/2, Eq. ~A5! becomes identical with them52
contribution of Eq.~35!.

The m51 contribution of Eq.~A1! takes the form

S1
m51~k,v!

v
5

2v4

4k2 E d3q

~2p!3
G1~q!CklGkl

0 ~k1q,v!,

~A6!

with Ckl5k•m* mkq̂l1k•m q̂kml* 2k•q̂ q̂kq̂l . Using the

relation ei j l mi q̂jkl5 ik•m, we find Ckl dkl52kc,Ckl kkkl

5k3c(122c2),Cklkkq̂l5k2(123c2)/2, andCklq̂kq̂l52kc.
Using these relations in Eq.~A6!, we obtain

S1
m51~k,v!

v

5E
0

`v2q2dq

16k2p2 E21

1

dcG1~q!

3
2v2kc2k3c~122c2!1kcq22k2~123c2!q

v22k22q222kqc1 i01
,

~A7!

After symmetrizing again the integrand of the integral with
respect toc, Eq. ~A7! becomes identical with them51 con-
tribution of Eq. ~36!, with the important property thatc2

21 can be factorized in the numerator in Eq.~36!.

APPENDIX B: DERIVATION OF EQ. „40…

Using the change of variablesx5q/2v, Eq. ~37! can be
written as

S1
m562~v,v!

v
57

v4

8p2E0

`

xdxG62~2vx!K~x!, ~B1!

whereK(x) denotes the integral

K~x!5E
21

1 c2~11c2!dc

~x2 i012c!~x2 i011c!
, ~B2!

which can be decomposed in

ReK~x!522x22
8

3
1~x1x3!ln

ux11u
ux21u

, ~B3!

and

ImK~x!5px~11x2!, ~B4!

if 21<x<1 and 0 otherwise. The integration overq in Eq.
~B1! can be carried out in the complex plane with the func-
tion f defined in Eq.~41!, which is identical with ReK except
for the absence of absolute values and for this reasonf is
analytical.G2(q) has only two poles in the upper half plane
k1 iAt2 andk2 iAt2, which correspond tox1 andx3 in Eq.
~40!.

Similarly, the imaginary part ofS1
m562(v,v) can be ob-

tained from Eqs.~B1! and ~B4!,

Im
S1

m562~v,v!

v
57

v4

8pE0

1

xdxG62~2vx!x~11x2!,

~B5!

which can also be calculated analytically as a function of
t2 ,k, andv.
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