32 research outputs found

    Fusion reaction 48Ca+249Bk leading to formation of the element Ts (Z=117)

    Get PDF
    The heaviest currently known nuclei, which have up to 118 protons, have been produced in 48Ca induced reactions with actinide targets. Among them, the element tennessine (Ts), which has 117 protons, has been synthesized by fusing 48Ca with the radioactive target 249Bk, which has a half-life of 327 d. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of 294Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to 293Ts. The present experimental results confirm the previous findings at the Dubna Gas-Filled Recoil Separator on the decay chains originating from the nuclei assigned to Ts

    RADIOCHEMICAL SEPARATION OF GROUP 5 ELEMENTS. MODEL EXPERIMENTS FOR INVESTIGATION OF DUBNIUM CHEMICAL BEHAVIOUR

    No full text
    Chemical behaviour of group 5 elements in the aqueous hydrofluoric acid solutions was studied. The radiochemical method for the cation exchange separation of Nb (Pa) and Ta from Zr, Hf and lanthanides is presented. The opportunity for ion exchange separation of Zr and Hf is shown. The developed scheme allows excluding of the presence of SF heavy actinides in fractions of separated elements. On the basis of the data of the present work, it is possible to suggest the following order of the stability of the fluoride complexes of group 4 and 5 elements: Nb (Ра) > Zr > Hf > Ta. The order of the complex formation is in agreement with theoretical predictions. This analytical procedure can be used in future heavy nuclei synthesis experiments for the separation of dubnium (Db) from other reactions products and for its chemical identification
    corecore