3,677 research outputs found
ProMC: Input-output data format for HEP applications using varint encoding
A new data format for Monte Carlo (MC) events, or any structural data,
including experimental data, is discussed. The format is designed to store data
in a compact binary form using variable-size integer encoding as implemented in
the Google's Protocol Buffers package. This approach is implemented in the
ProMC library which produces smaller file sizes for MC records compared to the
existing input-output libraries used in high-energy physics (HEP). Other
important features of the proposed format are a separation of abstract data
layouts from concrete programming implementations, self-description and random
access. Data stored in ProMC files can be written, read and manipulated in a
number of programming languages, such C++, JAVA, FORTRAN and PYTHON.Comment: 17 pages, 2 figure
The limits of social class in explaining ethnic gaps in educational attainment
This paper reports an analysis of the educational attainment and progress between age 11 and age 14 of over 14,500 students from the nationally representative Longitudinal Study of Young People in England (LSYPE). The mean attainment gap in national tests at age 14 between White British and several ethnic minority groups were large, more than three times the size of the gender gap, but at the same time only about one-third of the size of the social class gap. Socio-economic variables could account for the attainment gaps for Black African, Pakistani and Bangladeshi students, but not for Black Caribbean students. Further controls for parental and student attitudes, expectations and behaviours indicated minority ethnic groups were on average more advantaged on these measures than White British students, but this was not reflected proportionately in their levels of attainment. Black Caribbean students were distinctive as the only group making less progress than White British students between age 11 and 14 and this could not be accounted for by any of the measured contextual variables. Possible explanations for the White British-Black Caribbean gap are considered
Spin Injection and Relaxation in Ferromagnet-Semiconductor Heterostructures
We present a complete description of spin injection and detection in
Fe/Al_xGa_{1-x}As/GaAs heterostructures for temperatures from 2 to 295 K.
Measurements of the steady-state spin polarization in the semiconductor
indicate three temperature regimes for spin transport and relaxation. At
temperatures below 70 K, spin-polarized electrons injected into quantum well
structures form excitons, and the spin polarization in the quantum well depends
strongly on the electrical bias conditions. At intermediate temperatures, the
spin polarization is determined primarily by the spin relaxation rate for free
electrons in the quantum well. This process is slow relative to the excitonic
spin relaxation rate at lower temperatures and is responsible for a broad
maximum in the spin polarization between 100 and 200 K. The spin injection
efficiency of the Fe/Al_xGa_{1-x}As Schottky barrier decreases at higher
temperatures, although a steady-state spin polarization of at least 6 % is
observed at 295 K.Comment: 3 Figures Submitted to Phys. Rev. Let
Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury.
Although axonal regeneration after CNS injury is limited, partial injury is frequently accompanied by extensive functional recovery. To investigate mechanisms underlying spontaneous recovery after incomplete spinal cord injury, we administered C7 spinal cord hemisections to adult rhesus monkeys and analyzed behavioral, electrophysiological and anatomical adaptations. We found marked spontaneous plasticity of corticospinal projections, with reconstitution of fully 60% of pre-lesion axon density arising from sprouting of spinal cord midline-crossing axons. This extensive anatomical recovery was associated with improvement in coordinated muscle recruitment, hand function and locomotion. These findings identify what may be the most extensive natural recovery of mammalian axonal projections after nervous system injury observed to date, highlighting an important role for primate models in translational disease research
Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia
Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation) on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8±3.5% in encapsulated and 42.9±5.2% in nonencapsulated islets (P<0.2). Nonencapsulated islets released 37.7% (median) more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P<0.001). Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0±6.1% versus 24.8±5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation
Electron Spin Dynamics and Hyperfine Interactions in Fe/Al_0.1Ga_0.9As/GaAs Spin Injection Heterostructures
We have studied hyperfine interactions between spin-polarized electrons and
lattice nuclei in Al_0.1Ga_0.9As/GaAs quantum well (QW) heterostructures. The
spin-polarized electrons are electrically injected into the semiconductor
heterostructure from a metallic ferromagnet across a Schottky tunnel barrier.
The spin-polarized electron current dynamically polarizes the nuclei in the QW,
and the polarized nuclei in turn alter the electron spin dynamics. The
steady-state electron spin is detected via the circular polarization of the
emitted electroluminescence. The nuclear polarization and electron spin
dynamics are accurately modeled using the formalism of optical orientation in
GaAs. The nuclear spin polarization in the QW is found to depend strongly on
the electron spin polarization in the QW, but only weakly on the electron
density in the QW. We are able to observe nuclear magnetic resonance (NMR) at
low applied magnetic fields on the order of a few hundred Oe by electrically
modulating the spin injected into the QW. The electrically driven NMR
demonstrates explicitly the existence of a Knight field felt by the nuclei due
to the electron spin.Comment: 19 Figures - submitted to PR
Use of Non-Steroidal Anti-Inflammatory Drugs That Elevate Cardiovascular Risk: An Examination of Sales and Essential Medicines Lists in Low-, Middle-, and High-Income Countries
PMCID: PMC3570554This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
A method for isolating and culturing placental cells from failed early equine pregnancies
Early pregnancy loss occurs in 6–10% of equine pregnancies making it the main cause of reproductive wastage. Despite this, reasons for the losses are known in only 16% of cases. Lack of viable conceptus material has inhibited investigations of many potential genetic and pathological causes. We present a method for isolating and culturing placental cells from failed early equine pregnancies. Trophoblast cells from 18/30 (60%) failed equine pregnancies of gestational ages 14–65 days were successfully cultured in three different media, with the greatest growth achieved for cells cultured in AmnioChrome™ Plus. Genomic DNA of a suitable quality for molecular assays was also isolated from 29/30 of these cases. This method will enable future investigations determining pathologies causing EPL
Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials
Rationale Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. Methods The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). Results A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Conclusion Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field
- …
