57 research outputs found

    Insecticide Susceptibility of Phlebotomus argentipes in Visceral Leishmaniasis Endemic Districts in India and Nepal

    Get PDF
    Visceral leishmaniasis (VL), also know as kala azar, is one of the major public health concerns India, Nepal and Bangladesh. In the Indian subcontinent, VL is caused by Leishmania donovani which is transmitted by Phlebotomus argentipes. To date, Indoor Residual Spraying (IRS) campaigns have been unable to control the disease. Vector resistance to the insecticides used has been postulated as one of the possible reasons explaining this failure. A number of studies in the region have shown a variable degree of resistance to DDT in areas where this insecticide has been widely used for IRS (mainly India). However there is no coordinated and standardized program to monitor resistance to insecticides in the region. In this study we tested P. argentipes susceptibility to DDT and deltamethrin in VL endemic villages in India and Nepal. The results confirmed the DDT resistance in India and in a border village of Nepal. P. argentipes from both countries were in general susceptible to deltamethrin, an insecticide used in some long lasting insecticidal nets

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Influence of inclination angle of plate on friction, stick-slip and transfer layer-A study of magnesium pin sliding against steel plate

    No full text
    In this study, sliding experiments were conducted using pure magnesium pins against steel plates using an inclined pin-on-plate sliding tester. The inclination angle of the plate was varied in the tests and for each inclination angle, the pins were slid both perpendicular and parallel to the unidirectional grinding marks direction under both dry and lubricated conditions. SEM was used to study morphology of the transfer layer formed on the plates. Surface roughness of plates was measured using an optical profilometer. Results showed that the friction, amplitude of stick-slip motion and transfer layer formation significantly depend on both inclination angle and grinding marks direction of the plates. These variations could be attributed to the changes in the level of plowing friction taking place at the asperity level during sliding

    Subsurface deformation and the role of surface texture—A study with Cu pins and steel plates

    No full text
    The extent of subsurface deformation below the worn surface influences friction and transfer layer formation during sliding. Thus, in this study, the extent of plastic deformation and strain localization events that occur at various depths beneath the worn surface in the subsurface zones of Cu pins slid against steel plate with various surface textures have been determined using simple metallographic techniques. Results showed that the magnitude of plastic strain gradient and the depth of highly deformed zone depend on both coefficient of friction and transfer layer formation, which in-turn depends on the surface texture of harder counterface,under both dry and lubricated conditions. In addition, it was seen that the gradient of equivalent strain, as it approached the worn surface,was higher under dry conditions when compared to that under lubricated conditions

    Studies on friction and transfer layer using inclined scratch

    No full text
    Friction influences the nature of transfer layer formed at the interface between die and sheet during forming. In the present investigation, basic studies were conducted using 'Inclined Scratch Test' to understand the mechanism of transfer layer formation during sliding of pins made of an Al-Mg alloy on EN8 steel flats of different surface roughness under dry and lubricated conditions. The surfaces produced can be categorized into three different types: (a) uni-directional (b) 8-ground and (c) random. Rubbing the EN8 flat in a uni-directional manner and a criss-cross manner on emery sheets produced the uni-directional and 8 ground surfaces. The random surfaces were produced by polishing the EN8 flats using various abrasive powders. The influence of the 'nature of surface roughness' on material transfer and coefficient of friction were investigated. Scanning Electron Microscopy studies were performed on the contact surfaces of the Al-Mg alloy pins and EN8 steel flats to reveal the morphology of the transfer layer obtained. It was seen that the transfer layer is dependant on the coefficient of friction. The coefficient of friction, which has two components-the adhesion component and the plowing component, is controlled by the 'nature of surface'. A surface that promotes plane strain conditions near the surfaces increases the plowing component of friction

    Influence of surface texture on coefficient of friction and transfer layer formation during sliding of pure magnesium pin on 080 M40 (EN8) steel plate

    No full text
    Surface texture of a harder mating surface has a great influence on frictional behavior during sliding against softer materials. In the present investigation, experiments were conducted using a Pin-on-Plate inclined sliding tester to study the effect of the surface texture of hard surfaces on the coefficient of friction and transfer layer formation. 080 M40 (EN8) steel plates were ground to attain surfaces of different texture with different roughness. Pure magnesium pins were then slid at a sliding speed of 2 mm/s against the prepared steel plates. Scanning electron micrographs of the contact surfaces of pins and plates were used to reveal the morphology of transfer layer. It was observed that the coefficient of friction, formation of transfer layer, and the presence of stick–slip motion depend primarily on the surface texture of hard surfaces, but independent of surface roughness of hard surfaces. The effect of surface texture on coefficient of friction was attributed to the variation of plowing component of friction for different surfaces

    Influence of roughness parameters on coefficient of friction under lubricated conditions

    No full text
    Surface texture and thus roughness parameters influence coefficient of friction during sliding. In the present investigation, four kinds of surface textures with varying roughness were attained on the steel plate surfaces. The surface textures of the steel plates were characterized in terms of roughness parameter using optical profilometer. Then the pins made of various materials, such as Al-4Mg alloy, Al-8Mg alloy, Cu, Pb, Al, Mg, Zn and Sn were slid against the prepared steel plates using an inclined pin-on-plate sliding tester under lubricated conditions. It was observed that the surface roughness parameter, namely, RaR_a, for different textured surfaces was comparable to one another although they were prepared by different machining techniques. It was also observed that for a given kind of surface texture the coefficient of friction did not vary with RaR_a. However, the coefficient of friction changes considerably with surface textures for similar RaR_a values for all the materials investigated. Thus, attempts were made to study other surface roughness parameters of the steel plates and correlate them with coefficient of friction.It was observed that among the surface roughness parameters, the mean slope of the profile, Del a( \Delta a), was found to explain the variations best

    Influence of roughness parameters and surface texture on friction during sliding of pure lead over 080 M40 steel

    No full text
    In the present investigation, tests were conducted on a tribological couple made of cylindrical lead pin with spherical tip against 080 M40 steel plates of different textures with varying roughness under both dry and lubricated conditions using an inclined pin-on-plate sliding tester. Surface roughness parameters of the steel plates were measured using optical profilometer. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. It was observed that the coefficient of friction and the formation of transfer layer depend primarily on the surface texture of hard surfaces. A newly formulated non-dimensional hybrid roughness parameter called 'xi' (a product of number of peaks and maximum profile peak height) of the tool surface plays an important role in determining the frictional behaviour of the surfaces studied. The effect of surfaces texture on coefficient of friction was attributed to the variation of plowing component of friction, which in turn depends on the roughness parameter 'xi'
    corecore