219 research outputs found

    Technological Options for Promoting Adaptive Behaviors of Children with Fragile X Syndrome

    Get PDF
    Fragile X syndrome (FXS) is a genetic pathology due to an excessive length of a repetitive sequence of trinucleotides (CGG) in a specific gene (FMR1), matched to FMR1 protein, which is primarily responsible for the regular brain developing and functioning. It represents one of the most usual cause of developmental disabilities with learning difficulties as consequence of intellectual, communicative and social disorders. Additionally, anxiety, hyperactivity, seizures, gaze avoidance and autism spectrum disorders are frequently described within its patterns, basically occurring in males. FXS physical characteristics usually include long and narrow visage, large ears, prominent jaws and foreheads. Stereotypic behaviors, aggression and self-injuries are equally described among this population [1-3]. Accordingly, individuals with FXS may be entirely considered as affected by severe to profound developmental disabilities. One way to enable the latter persons with the independent access to positive stimulation is the use of assistive technology (AT) [4]. It refers to any technological piece, device, tool or equipment enhancing selfdetermination [5]. Despite its large and wide use among children with developmental disabilities, few studies have been carried out on the use of AT within FXS populatio

    Relationship between blood remifentanil concentration and stress hormone levels during pneumoperitoneum in patients undergoing laparoscopic cholecystectomy

    Get PDF
    The effect of remifentanil on stress response to surgery is unclear. However, there are not clinical studies investigating the relationship between blood remifentanil concentrations and stress hormones. Therefore, the aim of the present study was to assess the association between blood remifentanil concentrations measured after pneumoperitoneum and cortisol (CORT) or prolactin (PRL) ratio (intraoperative/preoperative value), in patients undergoing laparoscopic cholecystectom

    Role of surgical setting and patients-related factors in predicting the occurrence of postoperative pulmonary complications after abdominal surgery

    Get PDF
    OBJECTIVE: The aim of this retrospective study was to evaluate the role of surgical setting (urgent vs. elective) and approach (open vs. laparoscopic) in affecting postoperative pulmonary complications (PPCs) prevalence in patients undergoing abdominal surgery. PATIENTS AND METHODS: After local Ethical Committee approval, 409 patients who had undergone abdominal surgery between January and December 2014 were included in the final analysis. PPCs were defined as the development of one of the following new findings: respiratory failure, pulmonary infection, aspiration pneumonia, pleural effusion, pneumothorax, atelectasis on chest X-ray, bronchospasm or un-planned urgent re-intubation. RESULTS: PPCs prevalence was greater in urgent (33%) vs. elective setting (7%) (chi(2) with Yates correction: 44; p=0.0001) and in open (6%) vs. laparoscopic approach (1.9%) (chi(2) with Yates correction: 12; p=0.0006). PPCs occurrence was positively correlated with in-hospital mortality (Biserial Correlation r=0.37; p=0.0001). Logistic regression showed that urgent setting (p=0.000), Ariscat (Assess Respiratory Risk in Surgical Patients in Catalonia) score (p=0.004), and age (p=0.01) were predictors of PPCs. A cutoff of 23 for Ariscat score was also identified as determining factor for PPCs occurrence with 94% sensitivity and 29% specificity. CONCLUSIONS: Patients undergoing abdominal surgery in an urgent setting were exposed to a higher risk of PPCs compared to patients scheduled for elective procedures. Ariscat score fitted with PPCs prevalence and older patients were exposed to a higher risk of PPCs. Prospective studies are needed to confirm these result

    Quantifying not only bone loss, but also soft tissue swelling, in a murine inflammatory arthritis model using micro-computed tomography

    Get PDF
    In rodent models of inflammatory arthritis, bone erosion has been non-invasively assessed by micro-computed tomography (micro-CT). However, non-invasive assessments of paw swelling (oedema) are still based on clinical grading by visual evaluation, or measurements by callipers, not always reliable for the tiny mouse paws. The aim of this work was to demonstrate a novel straightforward 3D micro-CT analysis protocol capable of quantifying not only joint bone erosion, but also soft tissue swelling, from the same scans, in a rodent inflammatory arthritis model. Balb/c mice were divided into two groups: collagen antibody-induced arthritis (CAIA) and CAIA treated with prednisolone, the latter reflecting an established treatment in human rheumatoid arthritis. Clinical paw scores were recorded. On day 10, front paws were assessed by micro-CT and histology. Micro-CT measurements included paw volume (bone and soft tissue together) and bone volume at the radiocarpal joint, and bone volume from the radiocarpal to the metacarpophalangeal joint. Micro-CT analysis revealed significantly lower paw volume (−36%, P 0.5, P < 0.01). Untreated CAIA mice showed significantly higher clinical scores, higher inflammation levels histologically, cartilage and bone degradation, and pannus formation, compared with treated mice (P < 0.01). The presented novel micro-CT analysis protocol enables 3D-quantification of paw swelling at the micrometre level, along with the typically assessed bone erosion, using the same images/scans, without altering the scanning procedure or using contrast agents.E. Perilli, M. Cantley, V. Marino, T. N. Crotti, M. D. Smith, D. R. Haynes and A. A. S. S. K. Dharmapatn

    Impact modelling and a posteriori non-destructive evaluation of homogeneous particleboards of sugarcane bagasse

    Get PDF
    With a view to gaining an in-depth assessment of the response of particleboards (PBs) to different in-service loading conditions, samples of high-density homogeneous PBs of sugarcane bagasse and castor oil polyurethane resin were manufactured and subjected to low velocity impacts using an instrumented drop weight impact tower and four different energy levels, namely 5, 10, 20 and 30 J. The prediction of the damage modes was assessed using Comsol Multiphysics ® . ®. In particular, the random distribution of the fibres and their lengths were reproduced through a robust model. The experimentally obtained dent depths due to the impactor were compared with the ones numerically simulated showing good agreement. The post-impact damage was evaluated by a simultaneous system of image acquisitions coming from two different sensors. In particular, thermograms were recorded during the heating up and cooling down phases, while the specklegrams were gathered one at room temperature (as reference) and the remaining during the cooling down phase. On one hand, the specklegrams were processed via a new software package named Ncorr v.1.2, which is an open-source subset-based 2D digital image correlation (DIC) package that combines modern DIC algorithms proposed in the literature with additional enhancements. On the other hand, the thermographic results linked to a square pulse were compared with those coming from the laser line thermography technique that heats a line-region on the surface of the sample instead of a spot. Surprisingly, both the vibrothermography and the line scanning thermography methods coupled with a robotized system show substantial advantages in the defect detection around the impacted zone

    Profiling Insulin Like Factor 3 (INSL3) Signaling in Human Osteoblasts

    Get PDF
    Abstract BACKGROUND: Young men with mutations in the gene for the INSL3 receptor (Relaxin family peptide 2, RXFP2) are at risk of reduced bone mass and osteoporosis. Consistent with the human phenotype, bone analyses of Rxfp2(-/-) mice showed decreased bone volume, alterations of the trabecular bone, reduced mineralizing surface, bone formation, and osteoclast surface. The aim of this study was to elucidate the INSL3/RXFP2 signaling pathways and targets in human osteoblasts. METHODOLOGY/PRINCIPAL FINDINGS: Alkaline phosphatase (ALP) production, protein phosphorylation, intracellular calcium, gene expression, and mineralization studies have been performed. INSL3 induced a significant increase in ALP production, and Western blot and ELISA analyses of multiple intracellular signaling pathway molecules and their phosphorylation status revealed that the MAPK was the major pathway influenced by INSL3, whereas it does not modify intracellular calcium concentration. Quantitative Real Time PCR and Western blotting showed that INSL3 regulates the expression of different osteoblast markers. Alizarin red-S staining confirmed that INSL3-stimulated osteoblasts are fully differentiated and able to mineralize the extracellular matrix. CONCLUSIONS/SIGNIFICANCE: Together with previous findings, this study demonstrates that the INSL3/RXFP2 system is involved in bone metabolism by acting on the MAPK cascade and stimulating transcription of important genes of osteoblast maturation/differentiation and osteoclastogenesis

    Parp1 Localizes within the Dnmt1 Promoter and Protects Its Unmethylated State by Its Enzymatic Activity

    Get PDF
    Aberrant hypermethylation of CpG islands in housekeeping gene promoters and widespread genome hypomethylation are typical events occurring in cancer cells. The molecular mechanisms behind these cancer-related changes in DNA methylation patterns are not well understood. Two questions are particularly important: (i) how are CpG islands protected from methylation in normal cells, and how is this protection compromised in cancer cells, and (ii) how does the genome-wide demethylation in cancer cells occur. The latter question is especially intriguing since so far no DNA demethylase enzyme has been found.Our data show that the absence of ADP-ribose polymers (PARs), caused by ectopic over-expression of poly(ADP-ribose) glycohydrolase (PARG) in L929 mouse fibroblast cells leads to aberrant methylation of the CpG island in the promoter of the Dnmt1 gene, which in turn shuts down its transcription. The transcriptional silencing of Dnmt1 may be responsible for the widespread passive hypomethylation of genomic DNA which we detect on the example of pericentromeric repeat sequences. Chromatin immunoprecipitation results show that in normal cells the Dnmt1 promoter is occupied by poly(ADP-ribosyl)ated Parp1, suggesting that PARylated Parp1 plays a role in protecting the promoter from methylation.In conclusion, the genome methylation pattern following PARG over-expression mirrors the pattern characteristic of cancer cells, supporting our idea that the right balance between Parp/Parg activities maintains the DNA methylation patterns in normal cells. The finding that in normal cells Parp1 and ADP-ribose polymers localize on the Dnmt1 promoter raises the possibility that PARylated Parp1 marks those sequences in the genome that must remain unmethylated and protects them from methylation, thus playing a role in the epigenetic regulation of gene expression
    • …
    corecore