21,158 research outputs found

    The Stabilized Poincare-Heisenberg algebra: a Clifford algebra viewpoint

    Get PDF
    The stabilized Poincare-Heisenberg algebra (SPHA) is the Lie algebra of quantum relativistic kinematics generated by fifteen generators. It is obtained from imposing stability conditions after attempting to combine the Lie algebras of quantum mechanics and relativity which by themselves are stable, however not when combined. In this paper we show how the sixteen dimensional Clifford algebra CL(1,3) can be used to generate the SPHA. The Clifford algebra path to the SPHA avoids the traditional stability considerations, relying instead on the fact that CL(1,3) is a semi-simple algebra and therefore stable. It is therefore conceptually easier and more straightforward to work with a Clifford algebra. The Clifford algebra path suggests the next evolutionary step toward a theory of physics at the interface of GR and QM might be to depart from working in space-time and instead to work in space-time-momentum.Comment: 14 page

    Research study of some RAM antennas Final report, 18 Nov. 1964 - 18 Jun. 1965

    Get PDF
    Input impedance and radiation pattern determinations for cylindrical gap, waveguide excited and circular waveguide slot antenna array

    Measurement of the energy resolution and calibration of hybrid pixel detectors with GaAs:Cr sensor and Timepix readout chip

    Get PDF
    This paper describes an iterative method of per-pixel energy calibration of hybrid pixel detectors with GaAs:Cr sensor and Timepix readout chip. A convolution of precisely measured spectra of characteristic X-rays of different metals with the resolution and the efficiency of the pixel detector is used for the calibration. The energy resolution of the detector is also measured during the calibration. The use of per-pixel calibration allows to achieve a good energy resolution of the Timepix detector with GaAs:Cr sensor: 8% and 13% at 60 keV and 20 keV, respectively

    A critical evaluation of the water supply and stormwater management performance of retrofittable domestic rainwater harvesting systems

    Get PDF
    Rainwater harvesting systems are often used as both an alternative water source and a stormwater management tool. Many studies have focused on the water-saving potential of these systems, but research into aspects that impact stormwater retention—such as demand patterns and climate change—is lacking. This paper investigates the short-term impact of demand on both water supply and stormwater management and examines future and potential performance over a longer time scale using climate change projections. To achieve this, data was collected from domestic rainwater harvesting systems in Broadhempston, UK, and used to create a yield-after-spillage model. The validation process showed that using constant demand as opposed to monitored data had little impact on accuracy. With regards to stormwater management, it was found that monitored households did not use all the non-potable available water, and that increasing their demand for this was the most effective way of increasing retention capacity based on the modelling study completed. Installing passive or active runoff control did not markedly improve performance. Passive systems reduced the outflow to greenfield runoff for the longest time, whereas active systems increased the outflow to a level substantially above roof runoff in the 30 largest events

    Time invariance violating nuclear electric octupole moments

    Get PDF
    The existence of a nuclear electric octupole moment (EOM) requires both parity and time invariance violation. The EOMs of odd ZZ nuclei that are induced by a particular T- and P-odd interaction are calculated. We compare such octupole moments with the collective EOMs that can occur in nuclei having a static octupole deformation. A nuclear EOM can induce a parity and time invariance violating atomic electric dipole moment, and the magnitude of this effect is calculated. The contribution of a nuclear EOM to such a dipole moment is found, in most cases, to be smaller than that of other mechanisms of atomic electric dipole moment production.Comment: Uses RevTex, 25 page

    Collective T- and P- Odd Electromagnetic Moments in Nuclei with Octupole Deformations

    Get PDF
    Parity and time invariance violating forces produce collective P- and T- odd moments in nuclei with static octupole deformation. Collective Schiff moment, electric octupole and dipole and also magnetic quadrupole appear due to the mixing of rotational levels of opposite parity and can exceed single-particle moments by more than a factor of 100. This enhancement is due to two factors, the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. The above moments induce T- and P- odd effects in atoms and molecules. Experiments with such systems may improve substantially the limits on time reversal violation.Comment: 9 pages, Revte

    Searching for Faint Comoving Companions to the α Centauri system in the VVV Survey Infrared Images

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2017 Crown Copyright. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.The VVV survey has observed the southern disk of the Milky Way in the near infrared, covering 240 deg2^{2} in the ZYJHKSZYJHK_S filters. We search the VVV Survey images in a \sim19 deg2^{2} field around α\alpha Centauri, the nearest stellar system to the Sun, to look for possible overlooked companions that the baseline in time of VVV would be able to uncover. The photometric depth of our search reaches YY\sim19.3 mag, JJ\sim19 mag, and KSK_S\sim17 mag. This search has yielded no new companions in α\alpha Centauri system, setting an upper mass limit for any unseen companion well into the brown dwarf/planetary mass regime. The apparent magnitude limits were turned into effective temperature limits, and the presence of companion objects with effective temperatures warmer than 325K can be ruled out using different state-of-the-art atmospheric models. These limits were transformed into mass limits using evolutionary models, companions with masses above 11 MJup_{Jup} were discarded, extending the constraints recently provided in the literature up to projected distances of dPeer reviewedFinal Published versio

    Force-detected nuclear magnetic resonance: Recent advances and future challenges

    Get PDF
    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity -- and perhaps -- to 3D microscopy of molecules with atomic resolution.Comment: 15 pages & 11 figure

    Polynomial growth of volume of balls for zero-entropy geodesic systems

    Full text link
    The aim of this paper is to state and prove polynomial analogues of the classical Manning inequality relating the topological entropy of a geodesic flow with the growth rate of the volume of balls in the universal covering. To this aim we use two numerical conjugacy invariants, the {\em strong polynomial entropy hpolh_{pol}} and the {\em weak polynomial entropy hpolh_{pol}^*}. Both are infinite when the topological entropy is positive and they satisfy hpolhpolh_{pol}^*\leq h_{pol}. We first prove that the growth rate of the volume of balls is bounded above by means of the strong polynomial entropy and we show that for the flat torus this inequality becomes an equality. We then study the explicit example of the torus of revolution for which we can give an exact asymptotic equivalent of the growth rate of volume of balls, which we relate to the weak polynomial entropy.Comment: 22 page

    The role of the Berry Phase in Dynamical Jahn-Teller Systems

    Full text link
    The presence/absence of a Berry phase depends on the topology of the manifold of dynamical Jahn-Teller potential minima. We describe in detail the relation between these topological properties and the way the lowest two adiabatic potential surfaces get locally degenerate. We illustrate our arguments through spherical generalizations of the linear T x h and H x h cases, relevant for the physics of fullerene ions. Our analysis allows us to classify all the spherical Jahn-Teller systems with respect to the Berry phase. Its absence can, but does not necessarily, lead to a nondegenerate ground state.Comment: revtex 7 pages, 2 eps figures include
    corecore