1,196 research outputs found

    New surveys of UBV photometry and absolute proper motions at intermediate latitude

    Get PDF
    A photometric and proper motion survey has been obtained in 2 directions at intermediate latitude: (l=167.5∘l=167.5^\circ, b=47.4∘b=47.4^\circ; α2000=9h41m26s\alpha_{2000}=9^h41^m26^s,δ2000=+49∘53′27′′\delta_{2000}=+49^\circ53'27'') and (l=278∘l=278^\circ, b=47∘b=47^\circ; α2000=11h42m56s\alpha_{2000}=11^h42^m56^s, δ2000=−12∘31′42′′\delta_{2000}=-12^\circ31'42''). The survey covers 7.13 and 20.84 square degrees, respectively. The limiting magnitude is about 18.5 in V for both directions. We have derived the density laws for stars (MV_{V} ≥\ge 3.5) as a function of distance from the galactic plane. The density laws for stars follow a sum of two exponentials with scale heights of 240 pc (thin disk) and 790 pc (thick disk), respectively. The local density of thick disk is found to be 6.1±\pm3 % relative to the thin disk. The kinematical distribution of stars has been probed to distances up to 3.5 kpc above the galactic plane. New estimates of the parameters of velocity ellipsoid have been derived for the thick disk of the Galaxy. A comparison of our data sets with the Besan\c con model star count predictions has been performed, giving a good agreement in the magnitude range V = 13 to 18.Comment: 13 pages, 8 PS figures, To appear in A&

    Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies

    Get PDF
    Proximity induced superconducting energy gap in the surface states of topological insulators has been predicted to host the much wanted Majorana fermions for fault tolerant quantum computation. Recent theoretically proposed architectures for topological quantum computation via Majoranas are based on large networks of Kitaevs one dimensional quantum wires, which pose a huge experimental challenge in terms of scalability of the current single nanowire based devices. Here, we address this problem by realizing robust superconductivity in junctions of fabricated topological insulator Bi2Se3 nanowires proximity coupled to conventional s wave superconducting W electrodes. Milling technique possesses great potential in fabrication of any desired shapes and structures at nanoscale level, and therefore can be effectively utilized to scale up the existing single nanowire based design into nanowire based network architectures. We demonstrate the dominant role of ballistic topological surface states in propagating the long range proximity induced superconducting order with high IcRN product in long Bi2Se3 junctions. Large upper critical magnetic fields exceeding the Chandrasekhar Clogston limit suggests the existence of robust superconducting order with spin triplet cooper pairing. An unconventional inverse dependence of IcRN product on the width of the nanowire junction was also observed.Comment: 12 page

    Dimensionality reduction, and function approximation of poly (lactic-co-glycolic acid) micro-and nanoparticle dissolution rate

    Get PDF
    Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles’ dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regression algorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method offered the lowest margin of error and significantly outperformed the individual algorithms and the other ensemble techniques

    Star Formation Activity in the Galactic HII Complex S255-S257

    Full text link
    We present results on the star-formation activity of an optically obscured region containing an embedded cluster (S255-IR) and molecular gas between two evolved HII regions S255 and S257. We have studied the complex using optical, near-infrared (NIR) imaging, optical spectroscopy and radio continnum mapping at 15 GHz, along with Spitzer-IRAC results. It is found that the main exciting sources of the evolved HII regions S255 and S257 and the compact HII regions associated with S255-IR are of O9.5 - B3 V nature, consistent with previous observations. Our NIR observations reveal 109 likely young stellar object (YSO) candidates in an area of ~ 4'.9 x 4'.9 centered on S255-IR, which include 69 new YSO candidates. Our observations increased the number of previously identified YSOs in this region by 32%. To see the global star formation, we constructed the V-I/V diagram for 51 optically identified IRAC YSOs in an area of ~ 13' x 13' centered on S255-IR. We suggest that these YSOs have an approximate age between 0.1 - 4 Myr, indicating a non-coeval star formation. Using spectral energy distribution models, we constrained physical properties and evolutionary status of 31 and 16 YSO candidates outside and inside the gas ridge, respectively. The models suggest that the sources associated within the gas ridge are of younger population (mean age ~ 1.2 Myr) than the sources outside the gas ridge (mean age ~ 2.5 Myr). The positions of the young sources inside the gas ridge at the interface of the HII regions S255 and S257, favor a site of induced star formation.Comment: 46 pages, 14 figures, 5 tables. Accepted for publication in The Astrophysical Journa

    Evolution of microstructure in spray formed Al–18%Si alloy

    Get PDF
    Spray atomization and deposition process has emerged as an alternative to ingot and powder metallurgy routes. In the present investigation, we study the microstructural control during spray deposition of hypereutectic Al–Si alloy, employing different nozzle to substrate distances. Spray deposition is carried out using convergent–divergent close-coupled nozzle design at deposition distances of 200, 300, 450, and 550 mm. Microstructural characterization of oversprayed powders as well as spray formed deposits was performed. Microstructural features obtained at smaller deposition distance consist of co-existing primary Si phase and needle like eutectic Si. Dendrites of α-Al phase are observed indicating a large undercooling of the liquid pool prior to solidification. A large number of pre-solidified particles with very fine microstructure, embedded in a relatively coarse region, typically characterize those evolved at large deposition distances. However, at intermediate deposition distances, uniform and refined primary Si phases, 3–8 μm size, are observed. An undercooling effect is manifested in both the spray deposits as well as powder particles. These microstructural features have been discussed in light of a proposed model, which describes the presence of two layers (1) solidification layer and (2) interaction layer in the liquid pool

    Experimental Shear Study on Reinforced High Strength Concrete Beams Made Using Blended Cement

    Get PDF
    With the increased application of High Strength Concrete (HSC) inconstruction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect ofresearch. Research on the behavior of HSC reinforced beams with concretestrength more than 60 MPa has been carried out in the past and is stillcontinuing to understand the structural behavior of HSC beams. Along withthe many benefits of the high strength concrete, the more brittle behavior isof concern which leads to sudden failure. This paper presents the behaviorof reinforced HSC beams in shear with considering the effects of variousfactors like shear reinforcement ratio, longitudinal reinforcement ratio, l/dratio (length to depth ratio), etc. Ten numbers Reinforced Concrete Beamsof various sizes using concrete mix with three different w/c ratios (0.46, 0.26and 0.21) were cast for shear strength assessment. The beams were tested insimply supported condition over two fixed steel pedestals with load rate of0.2 mm/minute in displacement control. Mid-point deflection was measuredusing LVDT. A comparative analysis of theoretical approaches of Eurocode, extension of current IS code up to M90 and the experimental datawas done to understand the behavior of beams. Shear capacities of beamswithout any factors of safety were used to assess the actual capacities andthen was compared with the experimental capacity obtained. Results ofthis study can be used in the design of high strength concrete and will bemore reliable in Indian continent as the regional materials and exposureconditions were considered
    • …
    corecore