21 research outputs found

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    AQP3 is regulated by PPARγ and JNK in hepatic stellate cells carrying PNPLA3 I148M

    No full text
    Abstract Aquaglyceroporins (AQPs) allow the movement of glycerol that is required for triglyceride formation in hepatic stellate cells (HSC), as key cellular source of fibrogenesis in the liver. The genetic polymorphism I148M of the patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with hepatic steatosis and its progression to steatohepatitis (NASH), fibrosis and cancer. We aimed to explore the role of AQP3 for HSC activation and unveil its potential interactions with PNPLA3. HSC were isolated from human liver, experiments were performed in primary HSC and human HSC line LX2. AQP3 was the only aquaglyceroporin present in HSC and its expression decreased during activation. The PPARγ agonist, rosiglitazone, recovered AQP3 expression also in PNPLA3 I148M carrying HSC. When PNPLA3 was silenced, AQP3 expression increased. In liver sections from patients with NASH, the decreased amount of AQP3 was proportional to the severity of fibrosis and presence of the PNPLA3 I148M variant. In PNPLA3 I148M cells, the blockade of JNK pathway upregulated AQP3 in synergism with PPARγ. In conclusion, we demonstrated profound reduction of AQP3 in HSC carrying the PNPLA3 I148M variant in parallel to decreased PPARγ activation, which could be rescued by rosiglitazone and blockade of JNK

    Spiraea blumei G. Don

    No full text
    原著和名: イハガサ科名: バラ科 = Rosaceae採集地: 高知県 横倉山 (土佐 横倉山)採集日: 1965/8/8採集者: 萩庭丈壽整理番号: JH000554国立科学博物館整理番号: TNS-VS-95055

    AXL is a predictor of poor survival and of resistance to anti-EGFR therapy in RAS wild-type metastatic colorectal cancer

    No full text
    Background: RAS mutations are the only validated biomarkers in metastatic colorectal cancer (mCRC) for anti-epidermal growth factor receptor (EGFR) therapy. Limited clinical information is available on AXL expression, marker of epithelial to mesenchymal transition, in mCRC. Methods: AXL was retrospectively assessed by immunohistochemistry in 307 patients. RAS wild-type (WT) patients (N = 136) received first-line anti-EGFR-based therapy; RAS mutant patients (N = 171) received anti-angiogenic-based regimens. Preclinical experiments were performed using human RAS WT CRC cell lines and xenograft models. AXL RNA levels were assessed in a cohort of patients with available samples at baseline and at progression to anti-EGFR treatment and in the GSE5851 dataset. Results: AXL was expressed in 55/307 tumour tissues, correlating with worse survival in the overall population (AXL-positive, 23.7 months; AXL-negative, 30.8 months; HR, 1.455, P = 0.032) and in RAS WT patients (AXL-positive, 23.0 months; AXL-negative, 35.8 months; HR,1.780, P = 0.032). Progression-free survival (PFS) in the RAS WT cohort was shorter in the AXL-positive cohort (6.2 months versus 12.1 months; HR, 1.796, P = 0.013). Three-dimensional cultures obtained from a patient following anti-EGFR therapy resulted AXL-positive, showing resistance to anti-EGFR drugs and sensitivity to AXL inhibition. AXL transfection in CRC cell lines induced AXL overexpression and resistance to the EGFR blockade. At progression to cetuximab, 2/10 SW48-tumour xenograft mice showed AXL expression. Consistently, AXL RNA levels increased in 5/7 patients following anti-EGFR therapy. Moreover, in the GSE5851 dataset higher AXL RNA levels correlated with worse PFS with cetuximab in KRAS-exon2 WT chemorefractory patients. Conclusions: AXL is a marker of poor prognosis in mCRC with consistent clinical and preclinical evidences of involvement in primary and acquired resistance to anti-EGFR drugs in RAS WT patients
    corecore