5,775 research outputs found

    Photochemical mechanism of an atypical algal phytochrome

    Get PDF
    International audiencePhytochromes are bilin-containing photoreceptors that are typically sensitive to the red/far-red region of the visible spectrum. Recently, phytochromes from certain eukaryotic algae have become attractive targets for optogenetic applications because of their unique ability to respond to multiple wavelengths of light. Herein, a combination of time-resolved spectroscopy and structural approaches across picosecond to second timescales have been used to map photochemical mechanisms and structural changes in this atypical group of phytochromes. The photochemistry of an orange/far-red light-sensitive algal phytochrome from Dolihomastix tenuilepis has been investigated by using a combination of visible, IR and X-ray scattering probes. The entire photocycle, correlated with accompanying structural changes in the cofactor/protein, are reported. This study identifies a complex photocycle for this atypical phytochrome. It also highlights a need to combine outcomes from a range of biophysical approaches to unravel complex photochemical and macromolecular processes in multi-domain photoreceptor proteins that are the basis of biological light-mediated signalling

    A Generalization of Quantum Stein's Lemma

    Get PDF
    We present a generalization of quantum Stein's Lemma to the situation in which the alternative hypothesis is formed by a family of states, which can moreover be non-i.i.d.. We consider sets of states which satisfy a few natural properties, the most important being the closedness under permutations of the copies. We then determine the error rate function in a very similar fashion to quantum Stein's Lemma, in terms of the quantum relative entropy. Our result has two applications to entanglement theory. First it gives an operational meaning to an entanglement measure known as regularized relative entropy of entanglement. Second, it shows that this measure is faithful, being strictly positive on every entangled state. This implies, in particular, that whenever a multipartite state can be asymptotically converted into another entangled state by local operations and classical communication, the rate of conversion must be non-zero. Therefore, the operational definition of multipartite entanglement is equivalent to its mathematical definition.Comment: 30 pages. (see posting by M. Piani arXiv:0904.2705 for a different proof of the strict positiveness of the regularized relative entropy of entanglement on every entangled state). published version

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV

    Full text link
    Two-particle correlations of direct photons were measured in central 208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was extracted from the correlation strength and compared to theoretical calculations.Comment: 5 pages, 4 figure

    Fulde-Ferrell-Larkin-Ovchinnikov State in Heavy Fermion Superconductors

    Get PDF
    The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is a novel superconducting state in a strong magnetic field characterized by the formation of Cooper pairs with nonzero total momentum (k \uparrow, -k+q \downarrow), instead of the ordinary BCS pairs (k \uparrow, -k \downarrow). A fascinating aspect of the FFLO state is that it exhibits inhomogeneous superconducting phases with a spatially oscillating order parameter and spin polarization. The FFLO state has been of interest in various research fields, not only in superconductors in solid state physics, but also in neutral Fermion superfluid of ultracold atomic gases and in color superconductivity in high energy physics. In spite of extensive studies of various superconductors, there has been no undisputed experimental verification of the FFLO state, mainly because of the very stringent conditions required of the superconducting materials. Among several classes of materials, certain heavy fermion and organic superconductors are believed to provide conditions that are favorable to the formation of the FFLO state. This review presents recent experimental and theoretical developments of the FFLO state mainly in heavy fermion superconductors. In particular we address the recently discovered quasi-two-dimensional superconductor CeCoIn_5, which is a strong candidate for the formation of the FFLO state.Comment: 17 pages, 12 figures with jpsf2.cls, to be published in J. Phys. Soc. Jpn. (Special Topics - Frontiers of Novel Superconductivity in Heavy Fermion Compounds

    Pion Freeze-Out Time in Pb+Pb Collisions at 158 A GeV/c Studied via pi-/pi+ and K-/K+ Ratios

    Get PDF
    The effect of the final state Coulomb interaction on particles produced in Pb+Pb collisions at 158 A GeV/c has been investigated in the WA98 experiment through the study of the pi-/pi+ and K-/K+ ratios measured as a function of transverse mass. While the ratio for kaons shows no significant transverse mass dependence, the pi-/pi+ ratio is enhanced at small transverse mass values with an enhancement that increases with centrality. A silicon pad detector located near the target is used to estimate the contribution of hyperon decays to the pi-/pi+ ratio. The comparison of results with predictions of the RQMD model in which the Coulomb interaction has been incorporated allows to place constraints on the time of the pion freeze-out.Comment: 9 pages, 12 figure

    Searching for a link between the magnetic nature and other observed properties of Herbig Ae/Be stars and stars with debris disks

    Full text link
    Among the 21 Herbig Ae/Be stars studied, new detections of a magnetic field were achieved in six stars. For three Herbig Ae/Be stars, we confirm previous magnetic field detections. The largest longitudinal magnetic field, = -454+-42G, was detected in the Herbig Ae/Be star HD101412 using hydrogen lines. No field detection at a significance level of 3sigma was achieved in stars with debris disks. Our study does not indicate any correlation of the strength of the longitudinal magnetic field with disk orientation, disk geometry, or the presence of a companion. We also do not see any simple dependence on the mass-accretion rate. However, it is likely that the range of observed field values qualitatively supports the expectations from magnetospheric accretion models giving support for dipole-like field geometries. Both the magnetic field strength and the X-ray emission show hints for a decline with age in the range of ~2-14Myrs probed by our sample supporting a dynamo mechanism that decays with age. However, our study of rotation does not show any obvious trend of the strength of the longitudinal magnetic field with rotation period. Furthermore, the stars seem to obey the universal power-law relation between magnetic flux and X-ray luminosity established for the Sun and main-sequence active dwarf stars.Comment: 21 pages, 16 figures, 7 tables, accepted for publication in A&

    Scaling of Particle and Transverse Energy Production in 208Pb+208Pb collisions at 158 A GeV

    Full text link
    Transverse energy, charged particle pseudorapidity distributions and photon transverse momentum spectra have been studied as a function of the number of participants (N_{part}) and the number of binary nucleon-nucleon collisions (N_{coll}) in 158 A GeV Pb+Pb collisions over a wide impact parameter range. A scaling of the transverse energy pseudorapidity density at midrapidity as N_{part}^{1.08 \pm 0.06} and N_{coll}^{0.83 \pm 0.05} is observed. For the charged particle pseudorapidity density at midrapidity we find a scaling as N_{part}^{1.07 \pm 0.04} and N_{coll}^{0.82 \pm 0.03}. This faster than linear scaling with N_{part} indicates a violation of the naive Wounded Nucleon Model.Comment: 13 pages, 16 figures, submitted to European Physical Journal C (revised results for scaling exponents

    Event-by-Event Fluctuations in Particle Multiplicities and Transverse Energy Produced in 158.A GeV Pb+Pb collisions

    Get PDF
    Event-by-event fluctuations in the multiplicities of charged particles and photons, and the total transverse energy in 158A\cdot A GeV Pb+Pb collisions are studied for a wide range of centralities. For narrow centrality bins the multiplicity and transverse energy distributions are found to be near perfect Gaussians. The effect of detector acceptance on the multiplicity fluctuations has been studied and demonstrated to follow statistical considerations. The centrality dependence of the charged particle multiplicity fluctuations in the measured data has been found to agree reasonably well with those obtained from a participant model. However for photons the multiplicity fluctuations has been found to be lower compared to those obtained from a participant model. The multiplicity and transverse energy fluctuations have also been compared to those obtained from the VENUS event generator.Comment: To appear in Physical Review C; changes : more detailed discussion on errors and few figures modifie

    Geometric Entanglement of Symmetric States and the Majorana Representation

    Full text link
    Permutation-symmetric quantum states appear in a variety of physical situations, and they have been proposed for quantum information tasks. This article builds upon the results of [New J. Phys. 12, 073025 (2010)], where the maximally entangled symmetric states of up to twelve qubits were explored, and their amount of geometric entanglement determined by numeric and analytic means. For this the Majorana representation, a generalization of the Bloch sphere representation, can be employed to represent symmetric n qubit states by n points on the surface of a unit sphere. Symmetries of this point distribution simplify the determination of the entanglement, and enable the study of quantum states in novel ways. Here it is shown that the duality relationship of Platonic solids has a counterpart in the Majorana representation, and that in general maximally entangled symmetric states neither correspond to anticoherent spin states nor to spherical designs. The usability of symmetric states as resources for measurement-based quantum computing is also discussed.Comment: 10 pages, 8 figures; submitted to Lecture Notes in Computer Science (LNCS
    corecore