289 research outputs found
Crystal truncation rods in kinematical and dynamical x-ray diffraction theories
Crystal truncation rods calculated in the kinematical approximation are shown
to quantitatively agree with the sum of the diffracted waves obtained in the
two-beam dynamical calculations for different reflections along the rod. The
choice and the number of these reflections are specified. The agreement extends
down to at least of the peak intensity. For lower intensities,
the accuracy of dynamical calculations is limited by truncation of the electron
density at a mathematically planar surface, arising from the Fourier series
expansion of the crystal polarizability
Effect of chiral interactions on the structure of Langmuir monolayers
Structural changes in monolayers of the enantiomer and the racemic mixture of 1-hexadecyl-glycerol with temperature and surface pressure variations are compared. On compression, both monolayers exhibit a variation of the tilt azimuth from the direction to the nearest neighbor to the next nearest neighbor. In the monolayer of the racemate, this variation occurs as a first order transition. In the monolayer of the enantiomer, the unit cell is oblique, and continuously passes from a state close to the low-pressure state of the racemate to a state close to its high-pressure state. The azimuths of the unit-cell distortion and that of the tilt remain almost equal to each other. The effect of chirality decreases when the temperature is increased. Structural changes are explained in detail within the framework of the Landau theory of phase transitions
Thermal roughening of an SOS-model with elastic interaction
We analyze the effects of a long-ranged step-step interaction on thermal
roughening within the framework of a solid-on-solid model of a crystal surface
by means of Monte Carlo simulation. A repulsive step-step interaction is
modeled by elastic dipoles located on sites adjacent to the steps. In order to
reduce the computational effort involved in calculating interaction energy
based on long-ranged potentials, we employ a multi-grid scheme. As a result of
the long-range character of the step interaction, the roughening temperature
increases drastically compared to a system with short-range cutoff as a
consequence of anti-correlations between surface defects
Chiral and herringbone symmetry breaking in water-surface monolayers
We report the observation from monolayers of eicosanoic acid in the L′2 phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of their nearest neighbors. In this region we find a structural transition, which we tentatively identify as the rotator-herringbone transition L2d−L2h
X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films
We analyze the lineshape of x-ray diffraction profiles of GaN epitaxial
layers with large densities of randomly distributed threading dislocations. The
peaks are Gaussian only in the central, most intense part of the peak, while
the tails obey a power law. The decay typical for random dislocations
is observed in double-crystal rocking curves. The entire profile is well fitted
by a restricted random dislocation distribution. The densities of both edge and
screw threading dislocations and the ranges of dislocation correlations are
obtained
Phase Behaviour of Amphiphilic Monolayers: Theory and Simulation
Coarse grained models of monolayers of amphiphiles (Langmuir monolayers) have
been studied theoretically and by computer simulations. We discuss some of the
insights obtained with this approach, and present new simulation results which
show that idealised models can successfully reproduce essential aspects of the
generic phase behaviour of Langmuir monolayers.Comment: To appear in J. Phys.: Cond. Matte
A Phase-Field Model of Spiral Dendritic Growth
Domains of condensed-phase monolayers of chiral molecules exhibit a variety
of interesting nonequilibrium structures when formed via pressurization. To
model these domain patterns, we add a complex field describing the tilt degree
of freedom to an (anisotropic) complex-phase-field solidification model. The
resulting formalism allows for the inclusion of (in general, non-reflection
symmetric) interactions between the tilt, the solid-liquid interface, and the
bond orientation. Simulations demonstrate the ability of the model to exhibit
spiral dendritic growth.Comment: text plus Four postscript figure file
Towards New Half-Metallic Systems: Zinc-Blende Compounds of Transition Elements with N, P, As, Sb, S, Se, and Te
We report systematic first-principles calculations for ordered zinc-blende
compounds of the transition metal elements V, Cr, Mn with the sp elements N, P,
As, Sb, S, Se, Te, motivated by recent fabrication of zinc-blende CrAs, CrSb,
and MnAs. They show ferromagnetic half-metallic behavior for a wide range of
lattice constants. We discuss the origin and trends of half-metallicity,
present the calculated equilibrium lattice constants, and examine the
half-metallic behavior of their transition element terminated (001) surfaces.Comment: 2nd Version: lattice constants calculations added, text revise
- …
