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Thermal roughening of a solid-on-solid model with elastic interaction
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We analyze the effects of a long-ranged interaction between surface defects on thermal roughening within
the framework of a solid-on-solid model of a crystal surface by means of Monte Carlo simulation. Below
roughening the interaction can be understood in terms of a repulsive step-step interaction, which is modeled by
elastic dipoles located on sites adjacent to the steps. In order to reduce the computational effort involved in
calculating interaction energy based on long-ranged potentials, we employ a multigrid scheme. As a result of
the long-range character of the repulsive step interaction, the roughening temperature increases drastically
compared to a system with short-range cutoff as a consequence of anticorrelations between surface defects.
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I. INTRODUCTION

At low temperatures crystal surfaces are known to assu
the shape of a plane facet. With increasing temperature fl
tuations gradually contribute a nonzero thickness to the
tially flat facet. This surface thickness finally diverges a
finite temperature, the roughening temperature, where the
der of the facet is lost completely. This transition can
described by a set of renormalization group equations
analyzed by Kosterlitz and Thouless.1 Because of its unusua
properties and the relation to the two-dimensional Coulo
gas,2 this roughening transition has attracted substan
attention.3–6

Various discrete solid-on-solid~SOS! models have been
shown to undergo this type of transition. Most of these m
els incorporate local interactions, at most next-near
neighbor interactions. Within some of these models a tra
tion involving in-plane disorder is possible, usually referr
to as preroughening.7–14

Interaction of surface defects by means of elastic de
mation of the crystal, however, is of a long-ranged nat
and has apparently not been previously studied in the con
of roughening. Leaving the matter of preroughening as
we will try to elucidate the effects of long-range elastic i
teractions on the roughening process.

The paper is organized as follows. First we will introdu
elastic interaction between surface defects and suggest s
simplifications to make the problem tractable. Then
present the details of our discrete solid-on-solid model
lowing for long-range step interaction. We will show the r
sults of our extensive Monte Carlo simulations and interp
the effects.

II. STEP INTERACTION

The elastic step interaction on the surface of a se
infinite crystal can be described in terms of elastic force
poles located at the step edges.15–18 Knowing the Green
function Gi j for an infinite elastic half-space one is able
calculate the elastic displacement fieldui(r ) at a position on
0163-1829/2003/67~19!/195404~7!/$20.00 67 1954
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the crystal surface indicated by a two-dimensional in-pla
vector r with componentsr x ,r y from a given force density
f i(r ):

ui~r !5E d2r 8Gi j ~r2r 8! f j~r 8!. ~1!

The indicesi, j correspond to directionsx, y, andz. Repeated
indices are implicitly summed over. The elastic energyEel
becomes

Eel52E d2r ui~r ! f i~r !

52E E d2rd2r 8Gi j ~r2r 8! f j~r 8! f i~r !. ~2!

Using the fact that forcesf i(r ) are present only in the vicin
ity of a step and that the monopole moment at the step v
ishes, we can rewrite the energy using force dipole dens
qik(r ) as the next term in a multipole expansion

Eel'E E d2r d2r 8qjk~r 8!qil ~r !]k] lGi j ~r2r 8!. ~3!

Using symmetry arguments one can determine two ty
of force dipoles that are considered to be present at a ste16

One type involves in-plane forces perpendicular to the s
the other arises from forces orthogonal to the crystal surfa
Due to the structure of the Green function, dipole tens
involving forces orthogonal to the surface show a behav
different from those involving only in-plane forces.16,18 The
former lead to attractive or repulsive interaction depend
on the signs of the steps, the latter produce a si
independent behavior, which is strictly repulsive. There
materials19,20 where the sign-dependent contributions a
small compared to the step repulsion caused by in-pl
forces, and we will restrict our model to the case where
can neglect sign dependence of the steps.

In the case of isotropic linear elasticity the half-spa
elastic Green functionGi j (r ) can be written in a simple
form:15
©2003 The American Physical Society04-1
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Gi j ~r !5
11s

pE

1

r H ~12s!d i j 1s
r i r j

r 2 J , ~4!

wherei and j are now restricted to in-plane coordinates a
r 5ur u. The only two material parameters involved in Eq.~4!
are the dimensionless Poisson ratios and the Young’s modu-
lus E.

For a step stretching in they direction one would assum
the force dipole tensor at the step to be of the typeqi j
;d ixd jx . This means that the interaction between two li
elements will depend on their orientation.

In the case of two parallel steps, a distanced in the x
direction apart, the interaction energy densityw ~per area
squared! can be computed by evaluating the integrand fr
Eq. ~3! for two interacting force dipoles of the typeqi j
5d ixd jx . It is given by

w~r ,w!5gF3cosw21

r 3
1

s

12s

2115 cos4w215 cos2w

r 3 G ,

~5!

wherew denotes the angle between the radius vectorr and
the orientation of the dipole forces, which is given byw
5arctan(Dy/d), andDy is the distance between the dipoles
the y direction. The factorg is given by

g5
12s2

pE
Q2, ~6!

whereQ is the dipole moment per unit length of the step
Integrating the energy density for a configuration w

two parallel steps at distanced, we state that the energy pe
unit length of the line is just

W̃54g
1

d2
22g

1

«2

122s

12s
, ~7!

where the interaction was limited to distances greater tha«.
Note that the second term, which contributes to line ene
is negative for all possible Poisson ratios21<s<1/2.

In order to make another simplification of the step-s
interaction we compare the above result to the case o
scalarw;1/r 3 interaction associated with isotropic dipole
qi j ;d i j ,

W̃scalar54g
1

d2
12g

1

«2
, ~8!

from which we conclude that the only difference in this sp
cific geometry is a change in the line energy, which is mai
due to contributions from short range interactions.

Because we aim at showing the effect of long-range in
actions on the thermal roughening process, we neglect
angular dependence completely and assume that the d
moments are isotropic. This leads to a simple isotropic 1r 3

interaction between force dipoles. Furthermore, this ens
that the elastic contribution to the step energy is positive
19540
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III. MODEL DESCRIPTION

Within the framework of a solid-on-solid model we de
scribe the crystal surface by a simple height fieldhi of inte-
ger multiples of the lattice constanta. Like in a common
SOS model, overhangs are forbidden. Instead of the u
surface energy term~summation over nearest neighbors!

Esurf5
J

2aa (
^ i , j &

uhi2hj ua, ~9!

with coupling constantJ anda51,2 for the absolute solid-
on-solid ~ASOS! model and the discrete Gaussian solid-o
solid ~DGSOS! model respectively, we define an elastic st
interaction by introducing a field of elastic dipole chargesq.
To every lattice site a dipole chargeqk proportional to the
number of height differences to the four neighboring sites
assigned, i.e., sitek carries a number of

qk5
1

a (
^ i , j &

uhi2hj ud ik ~10!

charges. Figure 1 gives an example how charges are assi
to a simple height field configuration. The elastic dipo
charges interact, in consequence of Eq.~8!, via a modified
r 23 interaction potentialCpmax

(r ),

Cpmax
~r !5min„~a/r !3,pmax…, ~11!

where r is the in-plane distance between two lattice si
measured in units of the lattice constant andpmax is a number
limiting the interaction potential in vicinity ofr 50. For
a/r .A3 pmax the potential is given byCpmax

(r )5(a/r )3, oth-

erwise the potential is just constant, i.e.,Cpmax
(r )5pmax.

This gives rise to the elastic energy

Eel5
wel

2 (
i , j

qiqjCpmax
~r i j !, ~12!

wherer i j is the distance between lattice sitesi and j andwel
can be adjusted to give the desired interaction strength. N
that the casei 5 j is not excluded from the summation.

FIG. 1. The number of dipole charges assigned to a lattice si
proportional to the accumulated absolute height difference co
sponding to Eq.~10!.
4-2
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Later we also limit the range of interaction. For this pu
pose we introduce a cutoff potentialCpmax,l with cutoff
length l,

Cpmax,l~r !5H Cpmax
~r ! if r< l

0 if r . l
~13!

which vanishes for distances greater thanl. For two straight
steps of lengthL with distanced this elastic energy contri
bution consists of the self-energies of the steps and the
pected;d22 step interaction term

Eint'8wel

La

d2
, ~14!

for large distancesd@a.
By modifying pmax the self-energy contribution of a

straight step can be adjusted to the desired line energy, i
pendently of the step-step interaction amplitude. For giv
pmax the relative amplitude of line energy and step-step
teraction is fixed and we can concentrate on the cross
from a local to a long-range model depending on the cu
lengthl, which is studied using the interaction potentialsC1,l
wherepmax51. Later, however, other relative amplitudes a
studied for the potentialCpmax

without cutoff.
The simulation is carried out on a square lattice of s

(L/a)2564364 to 1283128. In order to calculate the dif
ference in energy for every metropolis Monte Carlo trial, w
apply a multigrid scheme based on Ref. 21, which has
ready been applied successfully to submonolayer epitax22

This cuts down the computational costs from ord
(L/a)4 to order (L/a)2ln(L/a) for each time step, which ha
to be multiplied by an additional factor of (L/a)2, for the
number of time steps the system needs to equilibrate. W
out the use of the multigrid scheme the computational co
would not have permitted system sizes beyondL/a525.
Still, the system sizeL/a<128 is rather restricted and we a
aware that the results should be accounted as qualita
rather than quantitative. However, computations on
DGSOS and ASOS models atL/a5128, which we did for
comparison, give transition temperatureskBTR'1.5J and
kBTR'1.25J respectively, wherekB is the Boltzmann con-
stant. These values agree reasonably well with kno
results.23

IV. RESULTS AND DISCUSSION

A. Height correlation function

We determine the roughening temperatureTR from the
behavior of the height-height correlation function. Belo
roughening,T,TR, the interface is macroscopically fla
i.e., the height-height correlation function

G~r !5
^@h~0!2h~r !#2&

a2
~15!

approaches a finite value in the limitr→`. To be more
precise, the correlation lengthj is finite and the interface ha
a characteristic width. Approaching the transition tempe
19540
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ture the correlation length increases and diverges aT
5TR. For T.TR the correlation functionG(r ) diverges23

according to the conventional theory of the roughening tr
sition,

G~r !;K~T!ln
r

a
, ~16!

with an amplitudeK(T) depending on the temperature. Plo
ting G(r ) vs ln(r/a), one could determine at what temper
ture the correlation lengthj diverges and the graphs ap
proach a straight line.

In a finite system with periodic boundary condition
however, the correlation lengthj cannot exceed the system
sizeL, and the height-height correlation functionG(r ) satu-
rates forT.TR as well. In order to overcome this finite-siz
effect, we will use an approach similar to the one used
Ref. 24. In order to keep the argument simple we only c
sider correlations along the main directions of the lattice a
replacer by x5r x .

As the limiting behavior ofG(x) for periodic boundary
conditions has to be a periodic function that behaves like
logarithm for distances!L, we define a ‘‘periodic loga-
rithm’’ by means of Fourier analysis. In order to avoid th
singularity atz5x/a→0 we start with

v~z!5 ln@max~z,1!# ~17!

and the integral Fourier or, using symmetry arguments,
cosine transform

ṽ~k!5
1

pE0

`

cos~kz!v~z!dz. ~18!

Making use of these Fourier components we define
L-periodic functionVL(x),

VL~x!5
2pa

L (
n51

`

ṽS 2pna

L D cosS 2pn

L
xD sinS 2pna

L D
2pna

L

,

~19!

which is a discrete back transform averaged over unit d
tances. For convenience we define

V~x!5VL~x!2VL~L/2! ~20!

and plotG(x) vs V(x). Figure 2 shows the correlation func
tion for the case of the full 1/r 3 interaction. At a temperature
of aboutkBT'9.0wel the graph becomes straight, indicatin
the roughening transition. Restricting the elastic dipo
charge interaction to distances<a, the graph of the correla
tion function becomes straight at a lower temperaturekBT
'3.0wel ~see Fig. 3!.

From the Kosterlitz-Thouless theory of the rougheni
transition, the slope of the correlation function is expected
assume the universal valueK(TR)52/p2. Plotting slope ver-
sus temperature one can also obtain an estimate of the ro
ening temperature~see Fig. 4!. From this we obtain identica
estimates for the two cases with or without cutoff.
4-3
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From this we conclude that the system with long-ran
interaction has a much higher transition temperature c
pared to the model with interaction cutoff. The rougheni
temperature changes by a factor;3.

Note that the roughening temperature increases gradu
with the cutoff length~see Fig. 5!. Even atl 53a the rough-
ening temperaturekBTR'5.8wel is still well below the value
for the infinite-range interaction. The increase of the rou
ening temperature is not a next-nearest-neighbor effect.

B. Energetic scales

One might argue that increasing the range of the inte
tion potential just changes the relevant energetic scale. H
ever, the energetic scales one is usually tempted to think
i.e., the energy of a straight step or single kinks on suc
step, do not change by more than 36%. The straight
energy for a step of lengtha increases fromwl51.3wel at
cutoff l 5a to 1.7wel at cutoff l 5` ~see also Fig. 5!, and the
corresponding kink energy changes fromwk52.8wel to
3.8wel . In the low-temperature regime, the energy of o
single adatom on a flat crystal surface is the important e
getic scale, which changes fromwa58.1wel to 8.6wel , an
increase by no more than 6%.

It should be noted that the main contribution to the chan
of these energetic scales comes from short-range inte
tions. Using a cutoff length ofl /a53, the straight line and

FIG. 2. Height-height correlation function without cutoff. Th
correlation function saturates for small temperatures and sh
logarithmic behavior forT.TR . The first straight line gives an
estimate ofkBTR /wel'9.0.
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kink energies are only about 6–7 % below the full potent
value, whereas the single adatom defect energy deviate
no more than 0.05%.

From the change of these energetic scales one usu
would expect an equal increase of the roughening temp
ture. One would hesitate, however, to make these chan
responsible for an increase of the roughening temperatur

s
FIG. 3. Height-height correlation function with a cutoff leng

l 5a, i.e., only charges on nearest-neighbor sites interact. The
straight line gives an estimate ofkBTR /wel'2.9.

FIG. 4. SlopeK(T) vs temperature. Estimation ofTR using the
universal value from conventional roughening theory giveskBTR

59.0wel for infinitely ranged interactions andkBTR53.0wel for cut-
off length l 5a.
4-4
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a factor of;3. With a scaling of the roughening temperatu
by line energywl rather thanwel ~see Fig. 5!, a factor;2 is
left unexplained.

Here we would like to present some arguments based
high-temperature disordered state, which justifies a la
change of the roughening temperature. Assume for a mom
that above the roughening transition the distribution
charges is more or less homogeneous. The energy of an
ditional dipole charge then relates to the two-dimensio
surface integral

E d2r C~r !, ~21!

whereas all local energetic scales discussed above depe
effectively one-dimensional charge distributions. Of cou
the integral has to be replaced by discrete summation if
result is supposed to have any meaning for the model. W
the line energy changes by no more than 30% when cha
ing from C1,1 to C1,̀ , the two-dimensional sum in the spir
of Eq. ~21! changes by a factor of;2.

If one assumes that the scale of the roughening temp
ture is given by Eq.~21!, corrections to the asymptoti
roughening temperature are of ordera/ l for l @a. Naive ana-
lytic evaluation of the integral suggests a simplekBTR/wel
;122a/3l law for the cutoff dependence of the rougheni
temperature forC1,l .

The point is that in the low-temperature regime ma
energy contributions are local because dipole charges are
tributed along steps. For a rough interface, however, the t
step does not make any sense and dipole charges ca
assumed to be evenly distributed over the whole pla
which effectively changes the dimensionality of energy in
gration.

C. Average energy

Comparing the average energyE of the system computed
with and without restriction of the charge interaction rang

FIG. 5. Scaled roughening temperatureskBTR /wel andkBTR /wl

vs inverse cutoff lengtha/ l . Even atl /a53 the roughening tem-
peraturekBTR'5.8wel is well below the infinite range potentia
value.wl denotes the energy for a line of lengtha corresponding to
the given potential cutoffl.
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one clearly sees that the energy for the nonrestricted inte
tion always stays well below the graph of the restricted s
tem ~see Fig. 6!. For high temperatures the average energE
goes linear with temperatureT, indicating that the heat ca
pacity becomes constant.

The range of the interaction potential only affects the b
havior below the transition temperature. Above the rough
ing transition all details of the interaction are combined in
one single parameter, the roughening temperatureTR. Ac-
cordingly the scaled graphsE/kBTR vs T/TR coincide for
T/TR.1 ~see Fig. 7!.

The decrease in average energy of the system using l
ranged interaction coincides with a smaller number of b
ken bonds~see Fig. 8!. The number of deviations from a
facet or the step length is smaller compared to the sys
with interaction potential cutoff.

D. Defect correlations

Restricting the surface height to$2a,0,1a%, one may
talk about a defect wherever the height deviates from

FIG. 6. Average energy per lattice siteE/wel vs temperature
kBT/wel . Average energy for the cutoff potential is strictly higher
comparison to the long-range case.

FIG. 7. Scaled average energy per lattice siteE/kBTR vs scaled
temperatureT/TR . For T/TR>1 the scaled data collapse onto
single graph.
4-5
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average height 0. Then one can analyze correlation betw
these defects, i.e., the thermal average of

gdefect~r !5
^@h2~r 8!2h2~r 81r !#2& r8

^h2~r 8!& r8
2 . ~22!

Scaled like this, the defect correlation will approach t
value 1 for large distancesr. At low temperatures repulsion
between the defects causes the graph to fall below the v
of 1 at midrange distances and ends well above the valu
1 at distancer /a51, because contact between equal defe
is favored due to what might be called surface or line ene
Increasing the temperature, this repulsion gap will beco
smaller and vanish eventually.

Figure 9 shows the defect correlation for both the lon
range interaction and cutoff for identical temperatu
Whereas for the long-range interaction the gap is s
present, it has already vanished from the system with cu

FIG. 8. Extra surface, i.e., number of broken bonds, vs temp
ture kBT/wel . Fewer defects are created when no cutoff is used

FIG. 9. Defect correlation atkBT/wel50.5 for both the long-
range interaction and cutoff. The long-range interaction caus
stronger repulsion gap~here nearx/a52), which means that the
defects prefer to be separated. This anticorrelation effect is res
sible for a strong decrease in entropy.
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The pronounced repulsion gap in the case of the infin
range interaction means that a single defect or island av
being close to other defects. This cuts down the numbe
favorable configurations and thus reduces the entropy co
bution to the free energy for a given density of defectsn.

For the following argument we will assume that the ma
result is a reduction of entropy by some factora,1,
whereas the average energy at givenn remains unchanged. In
a rather simplified picture we can then write the free ene
asFa5E(n)2TaS(n), wheren depends on temperatureT
and is determined by]F/]n50. In this picture the free en
ergy Fa(T) of the system with reduced entropy at tempe
ture T has the same properties as the original system
lower temperatureaT. Thus if the original system had
roughening temperatureTR the transition temperatureT̃R of
the system with reduced entropy will increase toT̃R
5TR /a.

E. Line energy versus step interaction

As mentioned in the model definition, the ratio of lin
energy and elastic step interaction strength, i.e., the r
wl /wel , can be varied by changingpmax. Increasingpmax,
the self-interaction of the dipole charges becomes more
more important, whereas the long-range contributions l
significance. Due to its discrete nature, in the limitpmax
→` our model becomes strictly local.

The line energywl can be considered as a kind of effe
tive Jeff @see Eq.~9!# in comparison to purely local models
and in purely local models the roughening temperature
proportional to the only energetic scalekBTR;J. The depen-
dence of the quantitykBTR/wl on wl /wel can therefore tell
whether long-ranged elastic effects are important, or whe
the model corresponds effectively to a local model with
coupling constantJeff;wl .

Computed results for infinite cutoff andpmax50.336, 1,
6.39, 17.1, and 38.7 can be seen in Fig. 10. This series
creases the line energy by factors of two. For largewl /wel
the graph should approach the local limit. From simulatio
using C1,0, avoiding the numerically problematic limiting
procedurepmax→`, we obtainkBTR/wl'2.1 using the cri-
terion as in Fig. 4, which differs by about 10% from th
more consistent value 1.9 derived by asymptotic scaling.
inset in Fig. 10 suggests that corrections to the asympt
value behave as

~kBTR/wl21.9!;5.5S wl

wel
D 21

. ~23!

The crossover computed from the intersection of the t
asymptotics lies somewhere nearwl /wel'3. Whenever the
line energy is much larger than the amplitude of the step-s
interaction term, the influence of step interaction on t
roughening temperature can be neglected. If, however,wl is
smaller than the step interaction amplitude, the long-ra
character of the elastic interaction is important and result
a strong increase ofkBTR/wl .

We would like to give an example of how the ratiowl /wel
can be related to quantities measured in experiments or

a-

a

n-
4-6
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THERMAL ROUGHENING OF A SOLID-ON-SOLID . . . PHYSICAL REVIEW B67, 195404 ~2003!
culated from atomistic models. Usually25,26 the bare line or
step energyb0 without interaction is given in eV/Å, which
can be related to thewl used here viawl5b0a. The strength
of the elastic step-step repulsion can be extracted from
terrace width distribution~TWD! measured for a vicina
surface.27 Many authors assume an elastic interaction
lengthA/d2 and present a value for the coefficientA given in
eV Å as a result. Recalling Eq.~14! we can identify 8wel
5A/a, which leads to the resultwl /wel;8b0a2/A. Just to
give the reader an idea about the order of this ratio we in

FIG. 10. Roughening temperature scaled by line ene
kBTR /wl vs line energy scaled by elastic interaction stren
wl /wel . The scaled roughening temperature decreases with hi
line energy as the model becomes effectively more local. The i
shows deviations of the scaled roughening temperature from
ymptotics on a logarithmic scale.
19540
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results for steps on Si~111! from a calculation based on em
pirical potentials. From Ref. 25 we conclude thatb0 is of the
orderb050.2 eV/Å and that the elastic interaction streng
A is of the orderA50.2 eV Å. With a lattice parameter o
abouta;5 Å we end up withwl /wel;23102. On the other
hand, Ref. 20 presents values for certain step configurat
on Si~001!, from which one could computewl /wel;2.
These results are arguable, since complicated effects suc
surface reconstruction may interfere. But at least it indica
that there are probably materials where this ratio is small
the influence of long-range elastic effects cannot be igno

V. CONCLUSION

In summary, we have presented a model that contains
essential effects of long-range elastic repulsion between e
tic defects on a crystal surface. We conclude that correlati
due to these long-range interactions can strongly increase
roughening temperature in solid-on-solid models, mainly
a reduction of the entropy. Since defects prefer to be situa
in secluded areas, the number of favorable configurati
and consequently the entropy contribution to the free ene
is diminished, leading to an increase of the roughening te
perature. A scaling law, Eq.~23!, has been found describin
the change of the roughening temperature depending on
ratio of local and long-range energetic scales. Our simu
tions suggest that the type of transition remains the sa
although a rigorous proof lies beyond the scope of this ty
of Monte Carlo approach.
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