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Thermal roughening of a solid-on-solid model with elastic interaction
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We analyze the effects of a long-ranged interaction between surface defects on thermal roughening within
the framework of a solid-on-solid model of a crystal surface by means of Monte Carlo simulation. Below
roughening the interaction can be understood in terms of a repulsive step-step interaction, which is modeled by
elastic dipoles located on sites adjacent to the steps. In order to reduce the computational effort involved in
calculating interaction energy based on long-ranged potentials, we employ a multigrid scheme. As a result of
the long-range character of the repulsive step interaction, the roughening temperature increases drastically
compared to a system with short-range cutoff as a consequence of anticorrelations between surface defects.
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[. INTRODUCTION the crystal surface indicated by a two-dimensional in-plane
vectorr with components, ,r, from a given force density
At low temperatures crystal surfaces are known to assumg(r):
the shape of a plane facet. With increasing temperature fluc-
tuations gradually contribute a nonzero thickness to the ini- _ 2,1 / /
tially flat?‘acet. T);ﬂs surface thickness finally diverges at a ui(r)—f dorGij(r=rf(r). @
finite temperature, the roughening temperature, where the Ofrhe indices, j correspond to directions y, andz. Repeated

der of the facet is lost completely. This transition can beindices are implicitly summed over. The elastic eneByy
described by a set of renormalization group equations ﬁrsﬁecomes -

analyzed by Kosterlitz and Thoulek8ecause of its unusual
properties and the relation to the two-dimensional Coulomb
gas? this roughening transition has attracted substantial Ee|=—f d?r u(n)fi(r)
attention®®

Various discrete solid-on-solilSOS models have been
shown to undergo this type of transition. Most of these mod- = _J f d?rd?r'Gyj(r—r")f;(r)fi(r). 2
els incorporate local interactions, at most next-nearest-

neighbor interactions. Within some of these models a transioSiNg the fact that forcef(r) are present only in the vicin-

tion involving in-plane disorder is possible, usually referred!ty Of @ step and that the monopole moment at the step van-
to as preroughening:4 ishes, we can rewrite th.e energy using force Q|pole densities
Interaction of surface defects by means of elastic defordik(r) as the next term in a multipole expansion
mation of the crystal, however, is of a long-ranged nature
and has apparently not been previously studied in the context Ee,~f f d?r d2r’qjk(r’)qi,(r)ak(9|Gij(r—r’). 3)
of roughening. Leaving the matter of preroughening aside,
we will try to elucidate the effects of |0ng-range elastic in- Using Symmetry arguments one can determine two types
teractions on the roughening process. of force dipoles that are considered to be present at a'$tep.
The paper is organized as follows. First we will introduce One type involves in-plane forces perpendicular to the step,
elastic interaction between surface defects and suggest somifs other arises from forces orthogonal to the crystal surface.
simplifications to make the problem tractable. Then wepye to the structure of the Green function, dipole tensors
present the details of our discrete solid-on-solid model alinyolving forces orthogonal to the surface show a behavior
lowing for long-range step interaction. We will show the re- gifferent from those involving only in-plane forcé%!® The
sults of our extensive Monte Carlo simulations and interpreformer lead to attractive or repulsive interaction depending
the effects. on the signs of the steps, the latter produce a sign-
independent behavior, which is strictly repulsive. There are
material$®>?° where the sign-dependent contributions are
small compared to the step repulsion caused by in-plane
The elastic step interaction on the surface of a semiforces, and we will restrict our model to the case where we
infinite crystal can be described in terms of elastic force dican neglect sign dependence of the steps.
poles located at the step eddés'® Knowing the Green In the case of isotropic linear elasticity the half-space
function G;; for an infinite elastic half-space one is able to elastic Green functiorG;;(r) can be written in a simple
calculate the elastic displacement fieldr) at a position on  form:®

II. STEP INTERACTION
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1+o0 1 rirj
Gij(N=—z7 (1_0)5ij+0r_2 ; (4)

|

hla=0

wherei andj are now restricted to in-plane coordinates and
r=|r|. The only two material parameters involved in E4).
are the dimensionless Poisson rati@and the Young’s modu-
lus E.

For a step stretching in thedirection one would assume
the force dipole tensor at the step to be of the type
~ dixjx .- This means that the interaction between two line
elements will depend on their orientation.

In the case of two parallel steps, a distamtén the x
direction apart, the interaction energy density(per area

squaregl can be computed by evaluating the integrand from k|G 1. The number of dipole charges assigned to a lattice site is

hla=1

|

hla=2

Eq. (3 for two interacting force dipoles of the type; proportional to the accumulated absolute height difference corre-
= dixOjx - Itis given by sponding to Eq(10).
+

w(r,e)= , . . .
(re)=y r3 l1-o0 r3 Within the framework of a solid-on-solid model we de-

(5)  scribe the crystal surface by a simple height fiejdf inte-
) ger multiples of the lattice constamat Like in a common
where ¢ denotes the angle between the radius vectand  SOS model, overhangs are forbidden. Instead of the usual

the orientation of the dipole forces, which is given By  surface energy terrtsummation over nearest neighbors
=arctanQy/d), andAy is the distance between the dipoles in

they direction. The factory is given by J
Esurm—— 2 [hi—hyl*, 9
1_0_2 X 2a (i)
Y= —E ®  with coupling constand anda=1,2 for the absolute solid-

on-solid (ASOS model and the discrete Gaussian solid-on-

whereQ is the dipole moment per unit length of the step. solid (DGSOS model respectively, we define an elastic step
Integrating the energy density for a configuration withinteraction by introducing a field of elastic dipole charges
two parallel steps at distanck we state that the energy per To every lattice site a dipole chargg proportional to the

unit length of the line is just number of height differences to the four neighboring sites is

assigned, i.e., sitk carries a number of
1 11-20
d? 2782 1-0’

W=4y (7)

1
A=3 (IE” [hi—hj| ik (10)
where the interaction was Iimitgd to distqnces greater than charges. Figure 1 gives an example how charges are assigned
Note that the second term, which contributes to line energy, g simple height field configuration. The elastic dipole

is negative for all possible Poisson ratiesl <o <1/2. charges interact, in consequence of E), via a modified
In order to make another simplification of the step-step, -3 jnteraction potentiall’, _(r)
max !

interaction we compare the above result to the case of a
— 3 . . . . . . . X
Z?ﬂa(;\.,v 1/r® interaction associated with isotropic dipoles \I,pmax(r):mm((a/r)slpmax), (11)
i ijs
wherer is the in-plane distance between two lattice sites
- measured in units of the lattice constant g, is a number
Wscalar:47¥+2'y_2: (8)  limiting the interaction potential in vicinity of =0. For
€ alr>3/pax the potential is given bwpmax(r)=(a/r)3, oth-

from which we conclude that the only difference in this spe-erwise the potential is just constant, i.&, ()= Pmax.
cific geometry is a change in the line energy, which is mainlyThis gives rise to the elastic energy
due to contributions from short range interactions.

Because we aim at showing the effect of long-range inter- W
actions on the thermal roughening process, we neglect the Be=— .2} A9 ¥p, (Tij), (12)
angular dependence completely and assume that the dipole '
moments are isotropic. This leads to a simple isotropié 1/ wherer; is the distance between lattice sifemndj andw,
interaction between force dipoles. Furthermore, this ensuresan be adjusted to give the desired interaction strength. Note
that the elastic contribution to the step energy is positive. that the casé=j is not excluded from the summation.
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Later we also limit the range of interaction. For this pur-ture the correlation length increases and divergesT at

pose we introduce a cutoff potentidl, , with cutoff  =T.. For T>Tg the correlation functiorG(r) diverge$®
lengthl, according to the conventional theory of the roughening tran-
) sition,
ool if r<I
v, (=) ™ _ (13) r
max 0 if r>I G(r)~K(T)Ina, (16)

which vanishes for distances greater thaRor two straight
steps of lengthL with distanced this elastic energy contri-
bution consists of the self-energies of the steps and the e
pected~d~? step interaction term

with an amplitude<(T) depending on the temperature. Plot-
4ing G(r) vs In(/a), one could determine at what tempera-
ture the correlation lengtl¥ diverges and the graphs ap-
proach a straight line.

In a finite system with periodic boundary conditions,

La
Eint~8We—, (14)  however, the correlation length cannot exceed the system
d sizel, and the height-height correlation functi@{r) satu-
for large distances>a. rates forT>Tg as well. In order to overcome this finite-size

By modifying pmay the self-energy contribution of a effect, we will use an approach similar to the one used in
straight step can be adjusted to the desired line energy, ind&ef- 24. In order to keep the argument simple we only con-
pendently of the step-step interaction amplitude. For giver'?"der correlations along the main directions of the lattice and
Pmax the relative amplitude of line energy and step-step infeplacer by x=r,. _ o
teraction is fixed and we can concentrate on the crossover AS the limiting behavior ofG(x) for periodic boundary
from a local to a long-range model depending on the cutofconditions has to be a periodic function that behaves like the

lengthl, which is studied using the interaction potentiddg, ~ 0garithm for distances<L, we define a "periodic loga-
wherep,.= 1. Later, however, other relative amplitudes are'thm” by means of Fourier analysis. In order to avoid the
studied for the potentia¥, _ without cutoff. singularity at{=x/a—0 we start with

The simulation is carried out on a square lattice of size v(H)=In[max¢,1)] (17)

(L/a)?=64x64 to 128<128. In order to calculate the dif- . . )
ference in energy for every metropolis Monte Carlo trial, we@nd the integral Fourier or, using symmetry arguments, the
apply a multigrid scheme based on Ref. 21, which has alcosine transform

ready been applied successfully to submonolayer epftaxy. 1 (=

Thi45 cuts down 2the computation_al costs from order (k)= _f cogké)v(£)d¢. (18)

(L/a)* to order (/a)“In(L/a) for each time step,2 which has 7Jo

to be muIt|p_I|ed by an additional factor of(a) _,.for the ... Making use of these Fourier components we define the
number of time steps the system needs to equilibrate. Wlthl:_ eriodic functionV/, (x)
out the use of the multigrid scheme the computational costs P LA
would not have permitted system sizes beydn=25. (27.,”3

sin

Still, the system siz&/a=<128 is rather restricted and we are 2 L
aware that the results should be accounted as qualitative y/ (x)=—— cos< x) ,
rather than quantitative. However, computations on the L L 2mna
DGSOS and ASOS models hfa=128, which we did for L
comparison, give transition temperaturkgTg~1.5] and (19
kg Tr~1.28] respectively, wherég is the Boltzmann con-
stant. These values agree reasonably well with know

which is a discrete back transform averaged over unit dis-
Rances. For convenience we define

results®®
V(X)=VL(X)=VL(L/2) (20
IV. RESULTS AND DISCUSSION . .
. . . and plotG(x) vs V(x). Figure 2 shows the correlation func-
A. Height correlation function tion for the case of the full 1? interaction. At a temperature

We determine the roughening temperatdig from the  Of aboutkgT~9.0w, the graph becomes straight, indicating
behavior of the height-height correlation function. Belowthe roughening transition. Restricting the elastic dipole
roughening, T<Tg, the interface is macroscopically flat, charge interaction to distancesa, the graph of the correla-

i.e., the height-height correlation function tion function becomes straight at a lower temperaky®
~3.0w (see Fig. 3
{[h(0)—h(r)]?) From the Kosterlitz-Thouless theory of the roughening
G(r)= T (15 transition, the slope of the correlation function is expected to

assume the universal valkgTg) = 2/72. Plotting slope ver-
approaches a finite value in the limit-o. To be more sus temperature one can also obtain an estimate of the rough-
precise, the correlation lengthis finite and the interface has ening temperaturéee Fig. 4. From this we obtain identical

a characteristic width. Approaching the transition temperaestimates for the two cases with or without cutoff.
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CORRELATION FUNCTION CORRELATION FUNCTION
128x128, no cutoff 64x64, cutoff length I=a
1.5 T T T T T T T T T T T I !
— k,Thw =118 — K, Tiw =4.52
— k,Tiw =113 — k,TIw =3.81
— kyTiw,=10.8 — k,Tiw, =349
— k,Tiw =103 kyTiw =3.21
i k,Tiw =9.87 U kyT/w, =2.95
kyT/w, =9.46 kyT/w,=2.69
k,Tlw =9.07 — k,Tiw =247
— K, Thw =8.69 k,T/w,=2.28
k Tiw =8.14
1+ B el
— kyTIw, =747
-~ k,Tw =6.41 =
&, N
O O
0.5
1 I L I 1 O I L I L I & I 1
3 -2 -1 0 -2 -1.5 -1 -0.5 0
V(x) V(x)

FIG. 2. Height-height correlation function without cutoff. The FIG. 3. Height-height correlation function with a cutoff length
correlation function saturates for small temperatures and showk=a, i.e., only charges on nearest-neighbor sites interact. The first
logarithmic behavior forT>Tg. The first straight line gives an straight line gives an estimate RETg/wg~2.9.
estimate okgTr/wWe~9.0.

kink energies are only about 6—7 % below the full potential
From this we conclude that the system with long-rangevalue, whereas the single adatom defect energy deviates by
interaction has a much higher transition temperature comno more than 0.05%.
pared to the model with interaction cutoff. The roughening From the change of these energetic scales one usually
temperature changes by a facteB. would expect an equal increase of the roughening tempera-
Note that the roughening temperature increases graduallyire. One would hesitate, however, to make these changes
with the cutoff length(see Fig. $. Even atl =3a the rough-  responsible for an increase of the roughening temperature by
ening temperaturkgTr~5.8w, is still well below the value
for the infinite-range interaction. The increase of the rough- s e T P

ening temperature is not a next-nearest-neighbor effect. 04l —

| BESARLERS | RASERREER) | BEEE
(64x64) cutoff I=a

— — - (64x64) no cutoff
(128x128) no cutoff

B. Energetic scales

One might argue that increasing the range of the interac-
tion potential just changes the relevant energetic scale. Howgg
ever, the energetic scales one is usually tempted to think Of\qo.zu ...................................................... LN o
i.e., the energy of a straight step or single kinks on such a
step, do not change by more than 36%. The straight line
energy for a step of length increases fronw,=1.3wg at 0.1
cutoff | =a to 1.7Av, at cutoffl =« (see also Fig.  and the
corresponding kink energy changes from=2.8wng to
3.8wg. In the low-temperature regime, the energy of one  —— TR é“"""'1'0' """" '1'2'“'
single adatom on a flat crystal surface is the important ener k. T/w
getic scale, which changes from,=8.1wg to 8.6wn,, an B
increase by no more than 6%. FIG. 4. SlopeK(T) vs temperature. Estimation & using the

It should be noted that the main contribution to the changeiniversal value from conventional roughening theory gikg%x
of these energetic scales comes from short-range interae=9.0w,, for infinitely ranged interactions arigTr= 3.0w,, for cut-
tions. Using a cutoff length offa=3, the straight line and off lengthl =a.
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] 4L 0—o (64x64) cutoff I=a ,»d h
3 o—ok T, /w,| | L |e- —© (64x64) no cutoff i
& 8 o -0k, /w, [ |-~ (128x128) no cutoff (”a
~ [ 3_ P
~ oF i
D W 2"
- | E ol
2" 4 -
z [ i
S -
= 2l - T
0 ......... Loy o001 Loy a1 Loy o001 [N O ]
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10 12 14
all k,Tiw,
FIG. 5. Scaled roughening temperatukg3 r/we andkgTg/w, FIG. 6. Average energy per lattice si&wg vs temperature

vs inverse cutoff lengtia/l. Even atl/a=3 the roughening tem-  kgT/w,,. Average energy for the cutoff potential is strictly higher in

peraturekgTr~5.8W, is well below the infinite range potential comparison to the long-range case.

value.w; denotes the energy for a line of lengittorresponding to

the given potential cutoff. one clearly sees that the energy for the nonrestricted interac-
tion always stays well below the graph of the restricted sys-

a factor of~ 3. With a scaling of the roughening temperaturetem (see Fig. 6. For high temperatures the average endtgy

by line energyw, rather thanw, (see Fig. 5, a factor~2 is  goes linear with temperaturg, indicating that the heat ca-

left unexplained. pacity becomes constant.

Here we would like to present some arguments based on a The range of the interaction potential only affects the be-
high-temperature disordered state, which justifies a largelfavior below the transition temperature. Above the roughen-
change of the roughening temperature. Assume for a momeiig transition all details of the interaction are combined into
that above the roughening transition the distribution ofone single parameter, the roughening temperaiiye Ac-
charges is more or less homogeneous. The energy of an agbrdingly the scaled graph&/kgTg vs T/Tg coincide for
ditional dipole charge then relates to the two-dimensionalr/T;>1 (see Fig. 7.
surface integral The decrease in average energy of the system using long-

ranged interaction coincides with a smaller number of bro-
f d2r W (r), (21)  ken bonds(see Fig. 8 The number of deviations from a
facet or the step length is smaller compared to the system

whereas all local energetic scales discussed above depend Wih interaction potential cutoff.
effectively one-dimensional charge distributions. Of course _
the integral has to be replaced by discrete summation if the D. Defect correlations
result is supposed to have any meaning for the model. While Restricting the surface height fo-a,0,+a}, one may
the line energy changes by no more than 30% when changalk about a defect wherever the height deviates from the
ing from¥,,to¥,,, the two-dimensional sum in the spirit
of EqQ. (21) changes by a factor of 2.

If one assumes that the scale of the roughening tempera
ture is given by EQ.(21), corrections to the asymptotic
roughening temperature are of or@ét for [>a. Naive ana-

lytic evaluation of the integral suggests a SimRE g/ wWg % oL
~1-2a/3l law for the cutoff dependence of the roughening &, ~ F
temperature fol,; . =

The point is that in the low-temperature regime major iy
energy contributions are local because dipole charges are dis oL |
tributed along steps. For a rough interface, however, the tern E 94 6—o (64x64) cutoff I=a

Eo
|
]

step does not make any sense and dipole charges can t & —© (64x64) no cutoff
assumed to be evenly distributed over the whole plane, - —-- (128x128) no cutoff
which effectively changes the dimensionality of energy inte- | IS T i i@ g g iisg g
gration. 0 1 2

C. Average energy FIG. 7. Scaled average energy per lattice EitkzTg vs scaled

Comparing the average enerByof the system computed temperatureT/Tg. For T/Tg=1 the scaled data collapse onto a
with and without restriction of the charge interaction range single graph.
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1.2 prerreres prer prevrr prrrT prrerTe prerT T rerr prerrr : The pronounced repulsion gap in the case of the infinite-
E range interaction means that a single defect or island avoids
1 3 being close to other defects. This cuts down the number of
: _-1 favorable configurations and thus reduces the entropy contri-
8 o8k L bution to the free energy for a given density of defatts
E | w7 For the following argument we will assume that the main
2 o06E 3 result is a reduction of entropy by some factarx1,
o F E whereas the average energy at gimaemains unchanged. In
= 0 45_ E a rather simplified picture we can then write the free energy
b= — (64x64) cutoff I=a asF,=E(n)—TaS(n), wheren depends on temperatufe
: 25_ N — — - (64xB4) no cutoff | 3 and is determined byF/dn=0. In this picture the free en-
TE 3 - — - (128x128) no cutoff| 3 ergy F,(T) of the system with reduced entropy at tempera-
i 1 | 1 | 1 | 1 ture T has the same properties as the original system at a
R R ST BT Y R T ST lower temperaturexT. Thus if the original system had a
kBT/We, roughening temperaturg the transition temperaturgg of
FIG. 8. Extra surface, i.e., number of broken bonds, vs temperat-zh?r %stem with reduced entropy will increase 1o
ture kgT/w . Fewer defects are created when no cutoff is used. RETE
average height 0. Then one can analyze correlation between E. Line energy versus step interaction
these defects, i.e., the thermal average of As mentioned in the model definition, the ratio of line

energy and elastic step interaction strength, i.e., the ratio

([h2(r")=h2(r"+1)1%),, W, /W, can be varied by changingma. Increasingpmax,

Gdetect ) = (hz(r’)>2 the self-interaction of the dipole charges becomes more and
r more important, whereas the long-range contributions lose

Scaled like this, the defect correlation will approach theSignificance. Due to its discrete nature, in the limifay

value 1 for large distances At low temperatures repulsion — our model becomes strictly local. .

between the defects causes the graph to fall below the value The line energyw, can be considered as a kind of effec-

of 1 at midrange distances and ends well above the value dWe Jer [see Eq(9)] in comparison to purely local models,

1 at distance/a= 1, because contact between equal defect@nd in purely local models the roughening temperature is

is favored due to what might be called surface or line energyProportional to the only energetic sc&ligTr~J. The depen-

Increasing the temperature, this repulsion gap will becomé&lence of the quantitkgTr/w; on w/w can therefore tell

smaller and vanish eventually. whether long-ranged elastic effects are important, or whether
Figure 9 shows the defect correlation for both the long-the model corresponds effectively to a local model with a

range interaction and cutoff for identical temperature.coupling constandeg~w;.

Whereas for the long-range interaction the gap is still Computed results for infinite cutoff angl,,=0.336, 1,

present, it has already vanished from the system with cutoff6.39, 17.1, and 38.7 can be seen in Fig. 10. This series in-

creases the line energy by factors of two. For langéw,,
5 , , , , the graph should approach the local limit. From simulations

(22

(64x64) cutoff 1= a using ¥, o, avoiding the nqmencally problematlc I|m|t|ng
procedurep.— =, we obtainkgTgr/w,~2.1 using the cri-
4k — — - (64x64) no cutoff i i ) . . .
terion as in Fig. 4, which differs by about 10% from the
more consistent value 1.9 derived by asymptotic scaling. The
= gl _ inset in Fig. 10 suggests that corrections to the asymptotic
~ value behave as
£ N '
b;? 2_ \ - W| -1
\ (kgTr/W—1.9~5.5 —| . (23
N 1 We
\
= \ - PR e . .
1 \ = The crossover computed from the intersection of the two
\ . . .
v w7 1 asymptotics lies somewhere neay/wg~3. Whenever the
03 ; A é 1I6 5 line energy is much larger than the amplitude of the step-step
/ interaction term, the influence of step interaction on the
x/a

roughening temperature can be neglected. If, howeveis

FIG. 9. Defect correlation akgT/we=0.5 for both the long- SMaller than the step interaction amplitude, the long-range
range interaction and cutoff. The long-range interaction causes @haracter of the elastic interaction is important and results in
stronger repulsion gafhere nean/a=2), which means that the @ strong increase dgTg/w;.
defects prefer to be separated. This anticorrelation effect is respon- We would like to give an example of how the ratig/wy,
sible for a strong decrease in entropy. can be related to quantities measured in experiments or cal-
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10 L results for steps on @ill) from a calculation based on em-

pirical potentials. From Ref. 25 we conclude ti@dtis of the
order 8°=0.2 eV/A and that the elastic interaction strength
A is of the orderA=0.2 eV A. With a lattice parameter of
abouta~5 A we end up withw,/wg~2X 10?. On the other
hand, Ref. 20 presents values for certain step configurations
J on Si001, from which one could computev,/wg~2.
WP These results are arguable, since complicated effects such as
w /w 1 surface reconstruction may interfere. But at least it indicates

] that there are probably materials where this ratio is small and
the influence of long-range elastic effects cannot be ignored.

kyTp/w,-1.9

o
fx

V. CONCLUSION

In summary, we have presented a model that contains the
essential effects of long-range elastic repulsion between elas-

FIG. 10. Roughening temperature scaled by line energ)}ic defects on a crystal sgrface. We conclude that porrelations
kgTr/w, vs line energy scaled by elastic interaction strengthdue to these long-range |_ntera(_:t|ons can strongly Increase the
w, /wg . The scaled roughening temperature decreases with highdPughening temperature in solid-on-solid models, mainly by
line energy as the model becomes effectively more local. The insed reéduction of the entropy. Since defects prefer to be situated
shows deviations of the scaled roughening temperature from add Secluded areas, the number of favorable configurations

ymptotics on a logarithmic scale.

culated from atomistic models. Usudy® the bare line or

step energyB? without interaction is given in eV/A, which

can be related to the, used here viav,= g%. The strength

and consequently the entropy contribution to the free energy
is diminished, leading to an increase of the roughening tem-
perature. A scaling law, Ed23), has been found describing
the change of the roughening temperature depending on the
ratio of local and long-range energetic scales. Our simula-

of the elastic step-step repulsion can be extracted from thilons suggest that the type of transition remains the same,

terrace width distribution(TWD) measured for a vicinal
surfacé?’ Many authors assume an elastic interaction pe

lengthA/d? and present a value for the coefficighgiven in
eV A as a result. Recalling Eq14) we can identify 8v,
=A/a, which leads to the result,/wg~83%?/A. Just to

although a rigorous proof lies beyond the scope of this type
IQf Monte Carlo approach.
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