80 research outputs found

    Impact of Plasmodium falciparum infection on the frequency of moderate to severe anaemia in children below 10 years of age in Gabon

    Get PDF
    BACKGROUND: Improving the understanding of childhood malarial anaemia may help in the design of appropriate management strategies. METHODS: A prospective observational study over a two-year period to assess the burden of anaemia and its relationship to Plasmodium falciparum infection and age was conducted in 8,195 febrile Gabonese children. RESULTS: The proportion of children with anaemia was 83.6% (n = 6830), higher in children between the ages of six and 23 months. Those under three years old were more likely to develop moderate to severe anaemia (68%). The prevalence of malaria was 42.7% and P. falciparum infection was more frequent in children aged 36-47 months (54.5%). The proportion of anaemic children increased with parasite density (p 60%), but was unrelated to P. falciparum parasitaemia. CONCLUSION: Malaria is one of the main risk factors for childhood anaemia which represents a public health problem in Gabon. The risk of severe malarial anaemia increases up the age of three years. Efforts to improve strategies for controlling anaemia and malaria are needed

    Population Status of a Cryptic Top Predator: An Island-Wide Assessment of Tigers in Sumatran Rainforests

    Get PDF
    Large carnivores living in tropical rainforests are under immense pressure from the rapid conversion of their habitat. In response, millions of dollars are spent on conserving these species. However, the cost-effectiveness of such investments is poorly understood and this is largely because the requisite population estimates are difficult to achieve at appropriate spatial scales for these secretive species. Here, we apply a robust detection/non-detection sampling technique to produce the first reliable population metric (occupancy) for a critically endangered large carnivore; the Sumatran tiger (Panthera tigris sumatrae). From 2007–2009, seven landscapes were surveyed through 13,511 km of transects in 394 grid cells (17×17 km). Tiger sign was detected in 206 cells, producing a naive estimate of 0.52. However, after controlling for an unequal detection probability (where p = 0.13±0.017; ±S.E.), the estimated tiger occupancy was 0.72±0.048. Whilst the Sumatra-wide survey results gives cause for optimism, a significant negative correlation between occupancy and recent deforestation was found. For example, the Northern Riau landscape had an average deforestation rate of 9.8%/yr and by far the lowest occupancy (0.33±0.055). Our results highlight the key tiger areas in need of protection and have led to one area (Leuser-Ulu Masen) being upgraded as a ‘global priority’ for wild tiger conservation. However, Sumatra has one of the highest global deforestation rates and the two largest tiger landscapes identified in this study will become highly fragmented if their respective proposed roads networks are approved. Thus, it is vital that the Indonesian government tackles these threats, e.g. through improved land-use planning, if it is to succeed in meeting its ambitious National Tiger Recovery Plan targets of doubling the number of Sumatran tigers by 2022

    Newcastle Disease Virus in Madagascar: Identification of an Original Genotype Possibly Deriving from a Died Out Ancestor of Genotype IV

    Get PDF
    In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed

    Genetic Characterization of Human T-Cell Lymphotropic Virus Type 1 in Mozambique: Transcontinental Lineages Drive the HTLV-1 Endemic

    Get PDF
    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of Adult T-Cell Leukemia/Lymphoma (ATL), the Tropical Spastic Paraparesis/HTLV-1-associated Myelopathy (TSP/HAM) and other inflammatory diseases, including dermatitis, uveitis, and myositis. It is estimated that 2–8% of the infected persons will develop a HTLV-1-associated disease during their lifetimes, frequently TSP/HAM. Thus far, there is not a specific treatment to this progressive and chronic disease. HTLV-1 has means of three transmission: (i) from mother to child during prolonged breastfeeding, (ii) between sexual partners and (iii) through blood transfusion. HTLV-1 has been characterized in 7 subtypes and the geographical distribution and the clinical impact of this infection is not well known, mainly in African population. HTLV-1 is endemic in sub-Saharan Africa. Mozambique is a country of southeastern Africa where TSP/HAM cases were reported. Recently, our group estimated the HTLV prevalence among Mozambican blood donors as 0.9%. In this work we performed a genetic analysis of HTLV-1 in blood donors and HIV/HTLV co-infected patients from Maputo, Mozambique. Our results showed the presence of three HTLV-1 clusters within the Cosmopolitan/Transcontinental subtype/subgroup. The differential rates of HIV-1/HTLV-1 co-infection in the three HTLV-1 clusters demonstrated the dynamic of the two viruses and the need for implementation of control measures focusing on both retroviruses

    Self-Reactivities to the Non-Erythroid Alpha Spectrin Correlate with Cerebral Malaria in Gabonese Children

    Get PDF
    BACKGROUND: Hypergammaglobulinemia and polyclonal B-cell activation commonly occur in Plasmodium sp. infections. Some of the antibodies produced recognize self-components and are correlated with disease severity in P. falciparum malaria. However, it is not known whether some self-reactive antibodies produced during P. falciparum infection contribute to the events leading to cerebral malaria (CM). We show here a correlation between self-antibody responses to a human brain protein and high levels of circulating TNF alpha (TNFα), with the manifestation of CM in Gabonese children. METHODOLOGY: To study the role of self-reactive antibodies associated to the development of P. falciparum cerebral malaria, we used a combination of quantitative immunoblotting and multivariate analysis to analyse correlation between the reactivity of circulating IgG with a human brain protein extract and TNFα concentrations in cohorts of uninfected controls (UI) and P. falciparum-infected Gabonese children developing uncomplicated malaria (UM), severe non-cerebral malaria (SNCM), or CM. RESULTS/CONCLUSION: The repertoire of brain antigens recognized by plasma IgGs was more diverse in infected than in UI individuals. Anti-brain reactivity was significantly higher in the CM group than in the UM and SNCM groups. IgG self-reactivity to brain antigens was also correlated with plasma IgG levels and age. We found that 90% of CM patients displayed reactivity to a high-molecular mass band containing the spectrin non-erythroid alpha chain. Reactivity with this band was correlated with high TNFα concentrations in CM patients. These results strongly suggest that an antibody response to brain antigens induced by P. falciparum infection may be associated with pathogenic mechanisms in patients developing CM

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
    • …
    corecore