14 research outputs found

    Neratinib plus trastuzumab is superior to pertuzumab plus trastuzumab in HER2-positive breast cancer xenograft models

    Get PDF
    Lapatinib (L) plus trastuzumab (T), with endocrine therapy for estrogen receptor (ER)+ tumors, but without chemotherapy, yielded meaningful response in HER2+ breast cancer (BC) neoadjuvant trials. The irreversible/pan-HER inhibitor neratinib (N) has proven more potent than L. However, the efficacy of N+T in comparison to pertuzumab (P) + T or L + T (without chemotherapy) remains less studied. To address this, mice bearing HER2+ BT474-AZ (ER+) cell and BCM-3963 patient-derived BC xenografts were randomized to vehicle, N, T, P, N+T, or P+T, with simultaneous estrogen deprivation for BT474-AZ. Time to tumor regression/progression and incidence/time to complete response (CR) were determined. Changes in key HER pathway and proliferative markers were assessed by immunohistochemistry and western blot of short-term-treated tumors. In the BT474-AZ model, while all N, P, T, N + T, and P + T treated tumors regressed, N + T-treated tumors regressed faster than P, T, and P + T. Further, N + T was superior to N and T alone in accelerating CR. In the BCM-3963 model, which was refractory to T, P, and P + T, while N and N + T yielded 100% CR, N + T accelerated the CR compared to N. Ki67, phosphorylated (p) AKT, pS6, and pERK levels were largely inhibited by N and N + T, but not by T, P, or P + T. Phosphorylated HER receptor levels were also markedly inhibited by N and N + T, but not by P + T or L + T. Our findings establish the efficacy of combining N with T and support clinical testing to investigate the efficacy of N + T with or without chemotherapy in the neoadjuvant setting for HER2+ BC

    Maturation of the angiotensin II cardiovascular response in the embryonic White Leghorn chicken (Gallus gallus)

    Get PDF
    Angiotensin II (Ang II) is an important regulator of cardiovascular function in adult vertebrates. Although its role in regulating the adult system has been extensively investigated, the cardiovascular response to Ang II in embryonic vertebrates is relatively unknown. We investigated the potential of Ang II as a regulator of cardiovascular function in embryonic chickens, which lack central nervous system control of cardiovascular function throughout the majority of incubation. The cardiovascular response to Ang II in embryonic chickens was investigated over the final 50% of their development. Ang II produced a dose-dependent increase in arterial pressure on each day of development studied, and the response increased in intensity as development progressed. The Ang II type-1 receptor nonspecific competitive peptide antagonist [Sar1 ile8] Ang II blocked the cardiovascular response to subsequent injections of Ang II on day 21 only. The embryonic pressure response to Ang II (hypertension only) differed from that of adult chickens, in which initial hypotension is followed by hypertension. The constant level of gene expression for the Ang II receptor, in conjunction with an increasing pressure response to the peptide, suggests that two Ang II receptor subtypes are present during chicken development. Collectively, the data indicate that Ang II plays an important role in the cardiovascular development of chickens; however, its role in maintaining basal function requires further study

    Towards personalized treatment for early stage HER2-positive breast cancer

    No full text
    Advances in HER2-targeted therapies have improved the survival of patients with HER2-positive breast cancer. The standard-of-care treatment for localized disease has been chemotherapy and 1 year of adjuvant HER2-targeted therapy, typically with the anti-HER2 antibody trastuzumab. Despite the effectiveness of this treatment, disease relapse occurs in a subset of patients; thus, focus has been placed on escalating treatment by either combining different HER2-targeted agents or extending the duration of HER2-targeted therapy. Indeed, dual HER2-targeted therapies and extended-duration anti-HER2 therapy, as well as adjuvant therapy with the anti-HER2 antibody–drug conjugate T-DM1, have all been approved for clinical use. Emerging evidence suggests, however, that some patients do not derive sufficient benefit from these additional therapies to offset the associated toxicities and/or costs. Similarly, the universal use of chemotherapy might not benefit all patients, and treatment de-escalation through omission of chemotherapy has shown promise in clinical trials and is currently being explored further. The future of precision medicine should therefore involve tailoring of therapy based on the genetics and biology of each tumour and the clinical characteristics of each patient. Predictive biomarkers that enable the identification of patients who will benefit from either escalated or de-escalated treatment will be crucial to this approach. In this Review, we summarize the available HER2-targeted agents and associated mechanisms of resistance, and describe the current therapeutic landscape of early stage HER2-positive breast cancer, focusing on strategies for treatment escalation or de-escalation
    corecore