45 research outputs found

    Highly regioselective iodination of arenes via iron(III)-catalyzed activation of N-iodosuccinimide

    Get PDF
    An iron(III)-catalyzed method for the rapid and highly regioselective iodination of arenes has been developed. Use of the powerful Lewis acid, iron(III) triflimide, generated in situ from iron(III) chloride and a readily available triflimide-based ionic liquid allowed activation of N-iodosuccinimide (NIS) and efficient iodination under mild conditions of a wide range of substrates including biologically active compounds and molecular imaging agents

    Ultra-structural cell distribution of the melanoma marker iodobenzamide: improved potentiality of SIMS imaging in life sciences

    Get PDF
    BACKGROUND: Analytical imaging by secondary ion mass spectrometry (SIMS) provides images representative of the distribution of a specific ion within a sample surface. For the last fifteen years, concerted collaborative research to design a new ion microprobe with high technical standards in both mass and lateral resolution as well as in sensitivity has led to the CAMECA NanoSims 50, recently introduced onto the market. This instrument has decisive capabilities, which allow biological applications of SIMS microscopy at a level previously inaccessible. Its potential is illustrated here by the demonstration of the specific affinity of a melanoma marker for melanin. This finding is of great importance for the diagnosis and/or treatment of malignant melanoma, a tumour whose worldwide incidence is continuously growing. METHODS: The characteristics of the instrument are briefly described and an example of application is given. This example deals with the intracellular localization of an iodo-benzamide used as a diagnostic tool for the scintigraphic detection of melanic cells (e.g. metastasis of malignant melanoma). B16 melanoma cells were injected intravenously to C(57)BL(6)/J(1)/co mice. Multiple B16 melanoma colonies developed in the lungs of treated animals within three weeks. Iodobenzamide was injected intravenously in tumour bearing mice six hours before sacrifice. Small pieces of lung were prepared for SIMS analysis. RESULTS: Mouse lung B16 melanoma colonies were observed with high lateral resolution. Cyanide ions gave "histological" images of the cell, representative of the distribution of C and N containing molecules (e.g. proteins, nucleic acids, melanin, etc.) while phosphorus ions are mainly produced by nucleic acids. Iodine was detected only in melanosomes, confirming the specific affinity of the drug for melanin. No drug was found in normal lung tissue. CONCLUSION: This study demonstrates the potential of SIMS microscopy, which allows the study of ultra structural distribution of a drug within a cell. On the basis of our observations, drug internalization via membrane sigma receptors can be excluded

    A standardized method for in vivo mouse pancreas imaging and semiquantitative beta cell mass measurement by dual isotope SPECT

    No full text
    Contains fulltext : 157000.pdf (publisher's version ) (Closed access)PURPOSE: In order to evaluate future beta cell tracers in vivo, we aimed to develop a standardized in vivo method allowing semiquantitative measurement of a prospective beta cell tracer within the pancreas. PROCEDURES: 2-[(123)I]Iodo-L-phenylalanine ([(123)I]IPA) and [Lys(40)([(111)In]DTPA)]exendin-3 ([(111)In]Ex3) pancreatic uptake and biodistribution were evaluated using SPECT, autoradiography, and an ex vivo biodistribution study in a controlled unilaterally nephrectomized mouse beta cell depletion model. Semiquantitative measurement of the imaging results was performed using [(123)I]IPA to delineate the pancreas and [(111)In]Ex3 as a beta cell tracer. RESULTS: The uptake of [(123)I]IPA was highest in the pancreas. Aside from the kidneys, the uptake of [(111)In]Ex3 was highest in the pancreas and lungs. Autoradiography showed only uptake of [(111)In]Ex3 in insulin-expressing cells. Semiquantitative measurement of [(111)In]Ex3 in the SPECT images based on the delineation of the pancreas with [(123)I]IPA showed a high correlation with the [(111)In]Ex3 uptake data of the pancreas obtained by dissection. A strong positive correlation was observed between the relative insulin positive area and the pancreas-to-blood ratios of [(111)In]Ex3 uptake as determined by counting with a gamma counter and the semiquantitative analysis of the SPECT images. CONCLUSIONS: [(123)I]IPA is a promising tracer to delineate pancreatic tissue on SPECT images. It shows a high uptake in the pancreas as compared to other abdominal tissues. This study also demonstrates the feasibility and accuracy to measure the beta cell mass in vivo in an animal model of diabetes
    corecore