1,362 research outputs found

    Statistical tests of sterile neutrinos using cosmology and short-baseline data

    Get PDF
    In this paper we revisit the question of the information which cosmology provides on the scenarios with sterile neutrinos invoked to describe the SBL anomalies using Bayesian statistical tests. We perform an analysis of the cosmological data in Λ\LambdaCDM+r+νs+r+\nu_s cosmologies for different cosmological data combinations, and obtain the marginalized cosmological likelihood in terms of the two relevant parameters, the sterile neutrino mass msm_s and its contribution to the energy density of the early Universe NeffN_{\rm eff}. We then present an analysis to quantify at which level a model with one sterile neutrino is (dis)favoured with respect to a model with only three active neutrinos, using results from both short-baseline experiments and cosmology. We study the dependence of the results on the cosmological data considered, in particular on the inclusion of the recent BICEP2 results and the SZ cluster data from the Planck mission. We find that only when the cluster data is included the model with one extra sterile neutrino can become more favoured that the model with only the three active ones provided the sterile neutrino contribution to radiation density is suppressed with respect to the fully thermalized scenario. We have also quantified the level of (in)compatibility between the sterile neutrino masses implied by the cosmological and SBL results.Comment: 23 pages, 4 figure

    Suppressing Unwanted Autobiographical Memories Reduces Their Automatic Influences: Evidence from Electrophysiology and an Implicit Autobiographical Memory Test

    Get PDF
    The present study investigated the extent to which people can suppress unwanted autobiographical memories in a mock crime memory detection context. Participants encoded sensorimotor-rich memories by enacting a lab crime (stealing a ring) and received direct suppression instructions so as to evade guilt detection in a brainwave-based concealed information test. Aftereffects of suppression on automatic memory processes were measured in an autobiographical implicit association test (aIAT). Results showed that suppression attenuated brainwave activity (P300) that is associated with crime-relevant memory retrieval, rendering innocent and guilty/suppression participants indistinguishable. However, guilty/suppression and innocent participants could nevertheless be discriminated via the late posterior negative slow wave, which may reflect the need to monitor response conflict arising between voluntary suppression and automatic recognition processes. Lastly, extending recent findings that suppression can impair implicit memory processes; we provide novel evidence that suppression reduces automatic cognitive biases that are otherwise associated with actual autobiographical memories

    Electromagnetic Production of Quarkonium in Z0Z^{0} decay

    Full text link
    The decay Z0Q++Z^{0}\rightarrow Q+ \ell^{+}\ell^{-}, where QQ is a JPC=1J^{PC}=1^{--} quarkonium state, has a very clean final state, which should make it easy to detect. The branching ratio of this mode is greater than 10610^{-6} for ρ\rho, ϕ\phi, and ψ\psi, indicating that these processes may be detectable at LEP.Comment: Latex, 6 pages, 2 figure in postscript format (uuencoded), (or available upon request), NUHEP-TH-93-1

    Dark matter annihilation at the galactic center

    Get PDF
    If cold dark matter is present at the galactic center, as in current models of the dark halo, it is accreted by the central black hole into a dense spike. Particle dark matter then annihilates strongly inside the spike, making it a compact source of photons, electrons, positrons, protons, antiprotons, and neutrinos. The spike luminosity depends on the density profile of the inner halo: halos with finite cores have unnoticeable spikes, while halos with inner cusps may have spikes so bright that the absence of a detected neutrino signal from the galactic center already places interesting upper limits on the density slope of the inner halo. Future neutrino telescopes observing the galactic center could probe the inner structure of the dark halo, or indirectly find the nature of dark matter.Comment: 4 pages, 5 figure

    Considerations on rescattering effects for threshold photo- and electro-production of π0\pi^0 on deuteron

    Get PDF
    We show that for the S-state π0\pi^0-production in processes γ+dd+π0\gamma+d\to d+\pi^0 and e+de+d+π0e^-+d\to e^-+d+\pi^0 the rescattering effects due to the transition: γ+dp+p+π \gamma+d\to p+p+\pi^- (or n+n+π+)d+π0n+n+\pi^+)\to d+\pi^0 are cancelled out due to the Pauli principle. The large values for these effects predicted in the past may result from the fact that the spin structure of the corresponding matrix element and the necessary antisymmetrization induced by the presence of identical protons (or neutrons) in the intermediate state was not taken into account accurately. One of the important consequences of these considerations is that π0\pi^0 photo- and electro-production on deuteron near threshold can bring direct information about elementary neutron amplitudes.Comment: Add a new sectio

    Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites

    Full text link
    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure

    Dark matter as a dynamic effect due to a non-minimal gravitational coupling with matter

    Full text link
    In this work the phenomenology of models possessing a non-minimal coupling between matter and geometry is discussed, with a particular focus on the possibility of describing the flattening of the galactic rotation curves as a dynamically generated effect derived from this modification to General Relativity. Two possibilities are discussed: firstly, that the observed discrepancy between the measured rotation velocity and the classical prediction is due to a deviation from geodesic motion, due to a non-(covariant) conservation of the energy-momentum tensor; secondly, that even if the principle of energy conservation holds, the dynamical effects arising due to the non-trivial terms in the Einstein equations of motion can give rise to an extra density contribution that may be interpreted as dark matter. The mechanism of the latter alternative is detailed, and a numerical session ascertaining the order of magnitude of the relevant parameters is undertaken, with possible cosmological implications discussed.Comment: Talk given at First Mediterranean Conference on Classical and Quantum Gravity, Kolymbari, Greece, 14-18 September 2009

    Gamma-ray and synchrotron emission from neutralino annihilation in the Large Magellanic Cloud

    Full text link
    We calculate the expected flux of gamma-ray and radio emission from the LMC due to neutralino annihilation. Using rotation curve data to probe the density profile and assuming a minimum disk, we describe the dark matter halo of the LMC using models predicted by N-body simulations. We consider a range of density profiles including the NFW profile, a modified NFW profile proposed by Hayashi et al.(2003) to account for the effects of tidal stripping, and an isothermal sphere with a core. We find that the gamma-ray flux expected from these models may be detectable by GLAST for a significant part of the neutralino parameter space. The prospects for existing and upcoming Atmospheric Cherenkov Telescopes are less optimistic, as unrealistically long exposures are required for detection. However, the effects of adiabatic compression due to the baryonic component may improve the chances for detection by ACTs. The maximum flux we predict is well below EGRET's measurements and thus EGRET does not constrain the parameter space. The expected synchrotron emission generally lies below the observed radio emission from the LMC in the frequency range of 19.7 to 8550 MHz. As long as <2x 10^-26 cm^3 s^-1 for a neutralino mass of 50 GeV, the observed radio emission is not primarily due to neutralinos and is consistent with the assumption that the main source is cosmic rays. We find that the predicted fluxes, obtained by integrating over the entire LMC, are not very strongly dependent on the inner slope of the halo profile, varying by less than an order of magnitude for the range of profiles we considered.Comment: 24 pages, 5 figures; detailed discussion of how the neutralino induced signals compare with the cosmic-ray induced ones was added. Main conclusions unchanged. Matches accepted version, to appear in Astroparticle Physic

    Two photon annihilation of Kaluza-Klein dark matter

    Full text link
    We investigate the fermionic one-loop cross section for the two photon annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray line with energy equal to the KK dark matter particle mass. We find that the cross section is large enough that if a continuum signature is detected, the energy distribution of gamma-rays should end at the particle mass with a peak that is visible for an energy resolution of the detector at the percent level. This would give an unmistakable signature of a dark matter origin of the gamma-rays, and a unique determination of the dark matter particle mass, which in the case studied should be around 800 GeV. Unlike the situation for supersymmetric models where the two-gamma peak may or may not be visible depending on parameters, this feature seems to be quite robust in UED models, and should be similar in other models where annihilation into fermions is not helicity suppressed. The observability of the signal still depends on largely unknown astrophysical parameters related to the structure of the dark matter halo. If the dark matter near the galactic center is adiabatically contracted by the central star cluster, or if the dark matter halo has substructure surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio
    corecore