37 research outputs found
Seafloor massive sulfides from mid-ocean ridges: Exploring the causes of their geochemical variability with multivariate analysis
The neovolcanic zones of mid-ocean ridges are host to seawater-derived hydrothermal systems forming seafloor massive sulfide (SMS) deposits. These deposits have high concentrations of base metals and potentially economic enrichment of a wide range of trace elements. The factors controlling this enrichment are currently poorly understood. We have investigated the main factors controlling SMS compositional variability through robust principal component analysis and robust factor analysis of published and newly obtained bulk geochemical data for samples collected from SMS deposits worldwide. We found that a large part of the observed variability is produced by a combination of three independent factors, which are interpreted to reflect (in order of importance): (1) the temperature of deposition, (2) the ridge spreading rate, and (3) zone refining. The first and the third factors are mostly related to processes operating near the seafloor, such as conductive cooling, mixing of the hydrothermal fluids with seawater and metal remobilization, and determine the relative proportions of the main minerals and, thus, of Cu and Zn (Co, Se, Sb, Pb). The ridge spreading rate influences the structure of the oceanic lithosphere, which exerts a major control on the length and depth of the hydrothermal convection cell and on the rock-to-water ratios in the reaction zone, which in turn control the behavior of the precious metals Au and Ag and elements including Ni (Mo, Se). Despite the obvious role of substrate rocks as metal sources, their composition (specifically mafic vs. ultramafic) does not emerge as a statistically significant independent factor
Central role of detachment faults in accretion of slow-spreading oceanic lithosphere
Author Posting. © Macmillan Publishers, 2008. This is the author's version of the work. It is posted here by permission of Macmillan Publishers for personal use, not for redistribution. The definitive version was published in Nature 455 (2008): 790-794, doi:10.1038/nature07333.The formation of oceanic detachment faults is well established from inactive,
corrugated fault planes exposed on seafloor formed along ridges spreading at less
than 80 km/My1-4. These faults can accommodate extension for up to 1-3 Myrs5,
and are associated with one of two contrasting modes of accretion operating along
the northern Mid-Atlantic Ridge (MAR). The first is symmetrical accretion,
dominated by magmatic processes with subsidiary high-angle faulting and
formation of abyssal hills on both flanks. The second is asymmetrical accretion
involving an active detachment fault6 along one ridge flank. An examination of
~2500 km of the MAR between 12.5 and 35°N reveals asymmetrical accretion
along almost half of the ridge. Hydrothermal activity identified to date in the study
region is closely associated with asymmetrical accretion, which also exhibits high-levels
of near continuous hydroacoustically and teleseismically recorded seismicity.
Enhanced seismicity is probably generated along detachment faults
accommodating a sizeable proportion of the total plate separation. In contrast,
symmetrical segments have lower levels of seismicity, which concentrates primarily
at their ends. Basalts erupted along asymmetrical segments have compositions that
are consistent with crystallization at higher pressures than basalts from
symmetrical segments, and with lower extents of partial melting of the mantle.
Both seismic and geochemical evidence indicate that the axial lithosphere is thicker
and colder at asymmetrical sections of the ridge, either because associated
hydrothermal circulation efficiently penetrates to greater depths, or because the
rising mantle is cooler. We suggest that much of the variability in seafloor
morphology, seismicity and basalt chemistry found along slow-spreading ridges
can be thus attributed to the frequent involvement of detachments in oceanic
lithospheric accretion.Supported by CNRS (JE), NSF (DKS, HS, JC, CL and SE), WHOI (JE, DKS,
HS and JC), Harvard University (JE, CL and SE), Univ. of Leeds (JC), and MIT (JE)
Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20âČN and 13°30âČN, Mid Atlantic Ridge)
Microbathymetry data, in situ observations, and sampling along the 138200N and 138200N oceanic
core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic
extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial
stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their
slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex
chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault
plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous
moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges
overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the alongextension
direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry
and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover
is shed. Detachment fault rocks are primarily basalt fault breccia at 138200N OCC, and gabbro and peridotite
at 138300N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of
lithologies in the detachment zone. Finally, faulting and volcanism dismember the 138300N OCC, with widespread
present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the
138200N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous
relationship between hydrothermal activity and oceanic detachment formation and evolution
Massive sulfides of the new hydrothermal sulfide cluster Semyenov (13°31' N), Mid-Atlantic Ridge
The paper describes the ores from the new hydrothermal sulfide cluster named Semenov (13°31ŽN, Mid-Atlantic Ridge) composed of several hydrothermal fields. Ores from the Semyenov-1, -3 and -4 hydrothermal fields show marcasite-pyrite composition with fine-grained, colloform, and clastic textures. Ores from the Semyenov-2 hydrothermal site are characterized by isocubanite-chalcopyrite-sphalerite-wurtzite mineral assemblage with fine-grained aggregates. They are uniquely enriched in Au (up to 188 ppm) and Ag (up to 1787 ppm) and conatin visible gold associated with opal, sphalerite and chalcopyrite. Ore textural analyses of ores from the Semenov hydrothermal sulfide cluster allowed us to reveal several ore facies (cf. Maslennikov and Zaykov, 2006): subseafloor hydrothermal, seafloor hydrothermal and clastic. The veinlet-disseminated ores from the Semyenov-2 and -4 hydrothermal fields belong to the subseafloor hydrothermal facies which is formed below the seafloor simultaneously with seafloor hydrothermal processes. Seafloor hydrothermal facies, formed on the seafloor surface near the hydrothermal vents, was found at the Semenov-1 and -2 hydrothermal fields and includes fine-grained and colloform ores. Clastic facies resulted from destruction of sulfide ores occurs at the Semenov-3 field as colluvial pyrite breccia. Textural and mineralogical features of ore facies from the Semenov hydrothermal cluster are comparable with those from massive sulfide deposits of the Urals