293 research outputs found

    Oxygen disorder in ice probed by X-ray Compton scattering

    Full text link
    We use electron momentum density in ice as a tool to quantify order-disorder transitions by comparing Compton profiles differences of ice VI, VII, VIII and XII with respect to ice Ih. Quantitative agreement is found between theory and experiment for ice VIII, which is the most ordered phase. Robust signatures of the oxygen disorder are identified in the momentum density for the VIII-VII ice phase transition. The unique aspect of this work is the determination of the fraction n_e of electron directly involved in phase transitions as well as the use of position space signatures for quantifying oxygen site disorder.Comment: 3 figures, 2 tables. Accepted for publication in Phys. Rev.

    Evidence Based Estimation of Macrodispersivity for Groundwater Transport Applications

    Get PDF
    The scope of this work is to discuss the proper choice of macrodispersion coefficients in modeling contaminant transport through the advection dispersion equation (ADE). It is common to model solute concentrations in transport by groundwater with the aid of the ADE. Spreading is quantified by macrodispersivity coefficients, which are much larger than the laboratory observed pore-scale dispersivities. In the frame of stochastic theory, longitudinal macrodispersivity is related to the hydraulic conductivity spatial variability via its statistical moments (mean, variance, integral scales), which are generally determined by geostatistical analysis of field measurements. In many cases, especially for preliminary assessment of contaminant spreading, these data are not available and ad hoc values are adopted by practitioners. The present study aims at recommending dispersivity values based on a thorough analysis of tens of field experiments. Aquifers are classified as of weak, medium, and high heterogeneity and for each class a range of macrodispersivity values is recommended. Much less data are available for the transverse macrodispersivities, which are significantly smaller than the longitudinal one. Nevertheless, a few realistic values based on field data, are recommended for applications. Transport models using macrodispersivities can predict mean concentrations, different from the local ones. They can be used for estimation of robust measures, like plumes spatial moments, longitudinal mass distribution and breakthrough curves at control planes

    Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking

    Get PDF
    Genome editing typically involves recombination between donor nucleic acids and acceptor genomic sequences subjected to double-stranded DNA breaks (DSBs) made by programmable nucleases (e.g. CRISPR-Cas9). Yet, nucleases yield off-target mutations and, most pervasively, unpredictable target allele disruptions. Remarkably, to date, the untoward phenotypic consequences of disrupting allelic and non-allelic (e.g. pseudogene) sequences have received scant scrutiny and, crucially, remain to be addressed. Here, we demonstrate that gene-edited cells can lose fitness as a result of DSBs at allelic and non-allelic target sites and report that simultaneous single-stranded DNA break formation at donor and acceptor DNA by CRISPR-Cas9 nickases (in trans paired nicking) mostly overcomes such disruptive genotype-phenotype associations. Moreover, in trans paired nicking gene editing can efficiently and precisely add large DNA segments into essential and multiple-copy genomic sites. As shown herein by genotyping assays and high-throughput genome-wide sequencing of DNA translocations, this is achieved while circumventing most allelic and non-allelic mutations and chromosomal rearrangements characteristic of nuclease-dependent procedures. Our work demonstrates that in trans paired nicking retains target protein dosages in gene-edited cell populations and expands gene editing to chromosomal tracts previously not possible to modify seamlessly due to their recurrence in the genome or essentiality for cell function.Stem cells & developmental biolog

    Untyping Typed Algebras and Colouring Cyclic Linear Logic

    Full text link
    We prove "untyping" theorems: in some typed theories (semirings, Kleene algebras, residuated lattices, involutive residuated lattices), typed equations can be derived from the underlying untyped equations. As a consequence, the corresponding untyped decision procedures can be extended for free to the typed settings. Some of these theorems are obtained via a detour through fragments of cyclic linear logic, and give rise to a substantial optimisation of standard proof search algorithms.Comment: 21

    Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease

    Get PDF
    Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening
    corecore