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Abstract
The scope of this work is to discuss the proper choice of macrodispersion coefficients in modeling contaminant transport

through the advection dispersion equation (ADE). It is common to model solute concentrations in transport by groundwater with
the aid of the ADE. Spreading is quantified by macrodispersivity coefficients, which are much larger than the laboratory observed
pore-scale dispersivities. In the frame of stochastic theory, longitudinal macrodispersivity is related to the hydraulic conductivity
spatial variability via its statistical moments (mean, variance, integral scales), which are generally determined by geostatistical
analysis of field measurements. In many cases, especially for preliminary assessment of contaminant spreading, these data are not
available and ad hoc values are adopted by practitioners. The present study aims at recommending dispersivity values based on
a thorough analysis of tens of field experiments. Aquifers are classified as of weak, medium, and high heterogeneity and for each
class a range of macrodispersivity values is recommended. Much less data are available for the transverse macrodispersivities, which
are significantly smaller than the longitudinal one. Nevertheless, a few realistic values based on field data, are recommended for
applications. Transport models using macrodispersivities can predict mean concentrations, different from the local ones. They can
be used for estimation of robust measures, like plumes spatial moments, longitudinal mass distribution and breakthrough curves at
control planes.
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Introduction
Analyzing and predicting the fate of contaminants

in the subsurface are key tasks for groundwater quality
management. Therefore, solute transport in groundwater is
a subject of paramount practical interest and its modeling
is a topic of active research.

We consider here transport of a conservative solute,
which is the starting point for modeling that of reactive
solutes as well. Traditionally, the advection-dispersion
equation (ADE) was adopted to quantify solute spreading
in porous media at pore scale, as appropriate to laboratory
experiments (Bear 1972):

∂C

∂t
+ U

∂C

∂x1
= DdL

∂2C

∂x2
1

+ DdT
∂2C

∂x2
2

+ DdV
∂2C

∂x2
3

. (1)

Here C (x, t) is the resident solute concentration defined at
Darcy scale in space x = (x1, x2, x3) and time t . Flow is
of constant velocity U in the horizontal direction x1 while
DdL, DdT , and DdV are the pore-scale dispersion tensor
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components in the longitudinal, transverse horizontal and
transverse vertical directions, respectively.

Pore-scale dispersion is commonly parameterized
following Scheidegger (1961): the dispersion coefficients
are the sum of pore molecular diffusion Dm coefficient
and of velocity-proportional hydrodynamic dispersion
terms. For typical values of U , the Peclet numbers
Pe = Ud /Dm , where d is the pore scale, are much
larger than unity and transport is advection dominated.
Consequently, hydrodynamic dispersion is the main
mechanism and the pertinent pore-scale dispersivities
αdi = Ddi /U with i ∈ {L, T , V } are approximately
constant.

Laboratory experiments indicate that αdL is of the
order of the pore diameter d for homogeneous and
isotropic media. It was found that in isotropic media
transverse dispersivities αdT = αdV are much smaller than
αdL by a factor of 5 to 40 (e.g., Dagan 1989, Figs. 2.10.4
and 2.10.5) for early experiments. More recent laboratory
experiments (Klenk and Grathwohl 2002) confirmed that
the pore-scale dispersivity values are generally much
smaller than those pertaining to transport in aquifers at
field-scale.

It is common in practice to quantify field scale flow
and transport in aquifers by the same ADE (1) with
U∂C /∂x1 replaced by U·∇C , where the velocity U(x, t)
is the solution of the flow equations in a homogeneous
medium for the given boundary and initial conditions.
Similarly, the pore scale dispersivities are replaced by
macrodispersivities αi = Di /U , i ∈ {L, T , V }, which are
by orders of magnitude larger than the values of pore scale
dispersivities, particularly the one characterizing solutes
longitudinal spreading αL � αdL (Zech et al. (2015) and
Tables B1 and B2 herein).

Spreading at the field scale is not the result of pore-
scale processes, but it is related to aquifer heterogeneity.
The heterogeneity manifests in spatial variability of the
three-dimensional (3D) hydraulic conductivity K field,
which is characterized by scales much larger than the
pore scale. This results in a spatially variable velocity
field with zones of fast flow on one hand and almost
stagnant ones on the other hand. Its variations relative
to the mean U and the effect upon spreading is
supposedly captured by the enhanced macrodispersivities.
Here, the mean flow is assumed horizontal, which is a
good approximation, in most sedimentary unconsolidated
formation under natural gradient conditions. At any rate
the paper builds on field data pertinent to horizontal mean
flow (Appendix B). Similarly, transverse horizontal and
transverse vertical macrodispersivities are larger than their
pore-scale counterparts (i.e., αT > αdT and αV > αdV ),
though to a lesser extent than in the longitudinal direction
(see Zech et al. (2019) for a recent review). Thus,
the process equation (ADE 1) was supposed to be
similar for transport at pore- and field scales, but with
dispersion coefficients resulting from inherently different
mechanisms.

A large body of literature of the last four decades
was devoted to the modeling of field scale dispersion,

primarily the longitudinal one. The common approach in
stochastic subsurface hydrology is to regard K (x) as a
space random function to account for its seemingly erratic
behavior, and similarly for the velocity field, solution of
the flow equations. With the local random concentration
C defined at an appropriate field scale (see discussion in
Appendix A) and U the mean velocity, an ADE similar to
Equation 1 is adopted. Relating the macrodispersivities to
the statistical parameters of conductivity K has become
a main topic of research (Dagan 1989; Gelhar 1993;
Rubin 2003) which is still ongoing. A review of the
various models and approaches is beyond the scope of
the present study.

For readers not familiar with the stochastic approach,
we provide in Appendix A a succinct presentation of the
macrodispersivity concept, and the developments needed
for the present study. The main results are encapsulated
by the ADE satisfied by the mean concentration 〈C 〉
(Equation A1), and the dependence of αL on time
and log-conductivity statistical moments (Equation A3).
In particular, after a short travel distance, the simple
asymptotic result based on first order approximation
αL → σ 2

Y Ih is valid where σ 2
Y stands for log-conductivity

variance and I h for the longitudinal correlation scale. The
asymptotic αL is typically reached after the plume traveled
a few correlation scales I h , which is typically around 10 m
depending on the particular site (Table B1).

It is common to solve the equations of groundwater
flow and transport numerically, by using available codes.
As a first step, the aquifer is divided into blocks which
are usually of large size relative to the scales of spatial
correlation I h , I v . The hydraulic properties of the blocks
are typically selected based on a few pumping tests and
geological profiles, if available. After solving for the head
and the associated velocity field, transport is modeled by
an ADE, leading to the concentration field C (x, t). To
account for the spreading associated with heterogeneity
of K which is not captured at the level of resolution of
the blocks, longitudinal and transverse macrodispersivities
are incorporated in the ADE.

Many times the values for αL in models are selected
arbitrarily by “thumb rules” or based on the “universal
scaling” typically leading to erroneously large values
and overestimation of solute plumes spreading. The use
of the scaling law (Neuman 1990) by which αL grows
infinitely with distance is not supported by reliable field
data (Zech et al. 2015). Also fixed ratios αT ,V /αL � 1 are
not confirmed by field observations (Zech et al. 2019).

Our aim is to provide practitioners who use macrodis-
persivity estimates in groundwater transport models with
reasonable values which are based on recent theoretical
developments and more important, on comprehensive field
data. Zech et al. (2015, 2019) provided a thorough col-
lection of reliable macrodispersivities from field studies,
but yet a strategy to apply that knowledge in models for
other field sites is missing.

Our specific task here is to present a coherent
methodology for the selection of the macrodispersivity,
which in combination with the mean velocity fully
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characterize the ADE model. To this end, we included
an illustrative example to show how macrodispersivity
estimates can be applied in a realistic scenario.

The plan of the paper is as follows. The second
section recapitulates tens of values of longitudinal
macrodispersivities, and fewer ones of transverse hor-
izontal and transverse vertical, originating from field
observations. We further analyze their dependence on the
aquifer heterogeneity level. The third section summarizes
the results and suggests recommendations for application
by practitioners. We close with a summary and con-
clusions. As mentioned above, Appendix A discusses
the foundation of macrodispersivities concept in the
stochastic framework. Finally, Appendix B presents the
detailed field data, classified according to their reliability.

Analysis of Macrodispersivity Field Data

Longitudinal Macrodispersivities and Comparison
with First-Order Theory

We consider values identified from field observa-
tions as the preferred source for developing estimates of
macrodispersivities for sites where the underlying infor-
mation might not be feasible to achieve. The study of Zech
et al. (2015) provided an overview of reliable longitudi-
nal macrodispersivities, building on the results of Gelhar
et al. (1992). Note, that macrodispersivities obtained from
published works are in most cases the result of some kind
of fitting of observed heads and that their accuracy depend
on the quality (and amount) of available data and the qual-
ity of the model.

First, we summarize the main findings of Zech
et al. (2015) toward their extension herein. The starting
point was the literature compendium of tracer test
data by Gelhar et al. (1992), who plotted longitudinal
macrodispersivity αL as a function of plume travel
distance L. The apparent grouping of the data, with
αL increasing with L, motivated the concept of “unique
scaling” or “universal” behavior (Neuman 1990) to
estimate an αL for any aquifer. After thoroughly reviewing
the original data, adding field data accumulated between
1992 and 2015 and elimination of low reliability data,
Zech et al. (2015) draw the following conclusions:

• There is no justification for the assumed general scaling
of αL with L. It rather leads to inadvertently large
predicted values of solute spreading.

• For each aquifer, αL is site-specific being a function of
the parameters quantifying aquifer heterogeneity rather
than the travel distance (Zech et al. 2015, Fig. 4).

• The local spatial evolution of αL with solute travel
distance shows a preasymptotic increase followed by
stabilization at a constant value. The asymptotic αL is
typically reached after the plume traveled a few integral
scales I h (Figure A1, Appendix A). The magnitude
depends on the aquifer specific level of heterogeneity,
as quantified for instance by log-conductivity variance.
This is in line with theoretical predictions (e.g., outlined

in Appendix A), as well as shown for a few field cases
where data were available (Zech et al. 2015, Fig. 5).

However, Zech et al. (2015) did not recommend
simple rules for selecting values of αL in applications,
for preliminary prediction when data obtained from
the characterization process are limited. Our aim here
is to infer a simple rule for selecting values of αL

in applications which may be of use for preliminary
prediction of transport. Therefore, we restructured the data
collection of Zech et al. (2015) and added hydraulic and
geological characteristics where available from literature.

The extended data set is listed in Tables B1 and B2
of the Appendix B. We added:

1 basic hydrogeological data such as porosity, mean
conductivity and flow velocity;

2 hydraulic conductivity statistics (where available)
which helps evaluating the level of heterogeneity and
which can be used for estimates of macrodispersivity
through first order theory (αL → σ 2

Y I );
3 characterizations of the aquifer material and deposition

history reported by the authors, which served again the
evaluation of the level of heterogeneity. This “soft data”
can further be used as reference by similarity when
estimating aquifer properties of a particular site.

We grouped sites based on the level of available
information: intensively studied sites and those with a
relative moderate level of site information, which is still
more than the one available at typical sites. Intensively
studied sites (Table B1) provide all relevant hydrogeo-
logical information, including a geostatistical analysis of
hydraulic conductivity observations. In many cases, con-
ductivity estimates from multiple sources has been identi-
fied, such as grain size analysis, permeameter, flowmeter,
or hydraulic profiling/injection logging. Note that results
from different methods can lead to significant differ-
ences in K -statistics, particularly for highly heterogeneous
sites such as MADE (Zech et al. 2021) due to method
specifics such as support volume, dimensionality, or
resolution.

All macrodispersivity data listed in Tables B1 and B2
are considered to be highly or moderately reliable based
on the reliability criteria defined in Zech et al. (2015,
2019), extension to those of Gelhar et al. (1992). Thus,
main reliability criteria are the appropriateness of the
method of analysis for the test settings, including flow
configuration and boundary conditions, the degree of
knowledge of the tracer history and the availability of
observations. Note that not all data of Zech et al. (2015)
were used here since we excluded transient data and
attributed an unique value to macrodispersivity, presum-
ably valid in the asymptotic regime. The preasymptotic
macrodispersivities, typically evaluated for experiments
with a travel distance of less than 15 m, do not provide
appropriate values reflecting the level of aquifer hetero-
geneity, but generally underestimate the asymptotic value.
The limitation to asymptotic values appears reasonable
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as models typically cover scales much larger than a few
integral scales of hydraulic conductivity.

For the intensely investigated aquifers (Table B1) we
also compared the measured αL with the theoretical first-
order value σ 2

Y Ih (Appendix A) when possible. The ratio
αL/

(
σ 2

Y Ih

)
assumes the following values: Borden 0.74,

Vegen 0.81, Cape Cod 1.5, Chalk River 1.6, Lauwiesen
0.96, Krauthausen 0.5, Horkheimer Insel 0.51. Hence, for
the considered aquifers, the prediction by the first-order
approximation is mostly within a factor of two, thus quite
accurate, various approximations notwithstanding.

We have not included in Table B1 the highly
heterogeneous MADE site, which was analyzed by
different methods in the recent paper by Zech et al. (2021,
Fig. 2) as the plume in the field experiment did not reach
the asymptotic stage. Furthermore, the predictive models
used in Zech et al. (2021, Fig. 2), are underlain by a high
level of characterization which is not available for the type
of sites addressed by the present study.

Theoretical results (Appendix A) and the analysis
of field data suggest that prediction of longitudinal
spreading of solute plumes in applications, by using the
macrodispersivity concept, requires the determination of
the aquifer two key parameters: log-conductivity variance
σ 2

Y and longitudinal integral scale I h . While this is highly
desirable, in many cases and for preliminary estimates,
these parameters are generally not available. Hence, we
proceed with the analysis of the available field data.

Amalgamation of Longitudinal Macrodispersivity Field
Data

We amalgamate the unique collection of available
field αL values toward formulation of guidelines for select-
ing a value for practical transport prediction. Although
approximate, the approach is preferable to adopting val-
ues based on the scaling assumption since they rely on
reliable field data.

Three levels of heterogeneity are selected, as function
of the composition of the porous materials:

• weak heterogeneity : appropriate to sandy aquifers with
some minor fraction of silt/clay and/or gravel;

• medium heterogeneity : aquifers material ranging from
gravel to sand with some silt/clay;

• high heterogeneity : aquifers with a wide variety
of materials, from gravel to silt/clay, in similar
proportions.

While the level of heterogeneity could be in principle
identified in a more rigorous manner by employing the
triangle sand-gravel-silt/clay (e.g., Folk et al. 1970), this
is generally not feasible in practice as the information
provided at most sites is incomplete and in many
cases not representative of the aquifer. A link to
the sedimentological perspective is provided in section
Selection of αL where we focus on the selection of
macrodispersivity for sites with limited information.

We believe that the research community should aim at
providing soft information, like, for example, the level of

heterogeneity employed here, that will allow practitioners
to feed groundwater stochastic models in case there is no
sufficient data for a given site. Much research is needed
to achieve this important objective; a collaborative effort
to place the available data in a centralized system, such
as wwhypda (Comunian and Renard 2009), together with
a soft classification could be a good starting point.

Here, the attribution of the level of heterogeneity for
each of the sites considered is based on different sources
of information, mostly the log-conductivity variance
(when available) and the description of aquifer material.
The inferred value of αL in a few cases helped for a
consistency check. The classification is inevitably prone
to uncertainty and some level of arbitrariness. The level
of heterogeneity is attributed to each site according to the
division in Tables B1 and B2.

Subsequently, we account for the uncertainty in
macrodispersivities obtained from published works
through a weighting factor. We therefore introduce the
level of information coefficient κ reflecting the amount
of available data on aquifer heterogeneity: κ = 1 refers
to little information, κ = 2 moderate information and
κ = 3 intensively studied sites (see Appendix B). In
combination with the level of reliability R (R = 1 is
highly and R = 2 is moderately reliable), the weighting
factor κ/R reflects the level of uncertainty of αL.

The asymptotic αL values are averaged for each class
of heterogeneity, weighted by the level of information κ

and degree of reliability R proportional to κ/R. Results
are summarized in Table 1 that displays the average and
standard deviation of macrodispersivity values for each
of the three levels of heterogeneity. Although the limited
size of each sample does not allow a robust estimate of
the first two moments, the behavior of the mean and
standard deviation of αL, as reproduced in Table 1, is
rather meaningful and consistent, as discussed later.

We found that the weight does not have a significant
impact on the estimates. Also adopting a different level
of heterogeneity for the sites that are more uncertain
does not change significantly the results displayed in
Table 1.

The mean αL increases with the level of heterogene-
ity, as expected. The standard deviation is relatively large,
with the coefficient of variation CV decreasing with the
level of heterogeneity, with CV = SD /E (αL) = 0.93, 0.47,
0.38 for weak, medium and high heterogeneity, respec-
tively. Later, we further discuss the results of Table 1 in
light of their possible use in applications to groundwater
transport.

While Table 1 provides the two statistical moments
of αL, in the Illustrive Example we make use of the
probability density function (PDF) of αL, when regarded
as a random variable. Toward this aim, we have plotted
in Figure 1 the cumulative density (CDF) of the αL field
values of Tables B1 and B2, separately for each level of
heterogeneity. The small number of data contributing to
the distributions of Figure 1 makes the fitting by a particu-
lar CDF F (αL) quite uncertain. Nevertheless, we adopted
the common log-normal distribution F (αL) = 1 −
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Table 1
Weighted Average of Longitudinal

Macrodispersivity αL for Each Level of
Heterogeneity and the Standard Deviation (SD)

Based on Reported Field Data (Tables B1 and B2)

Level of
Heterogeneity

Number of
Sites

Mean of
αL (m)

SD of
αL (m)

1—weak 13 1.1 1.1
2—medium 10 3.2 1.5
3—high 7 7.5 2.9

Figure 1. Cumulative distribution of the longitudinal disper-
sivity αL for the three classes of heterogeneity (1—weak,
2—medium, 3—high); the solid line is the log-normal dis-
tribution inferred by the method of moments.

0.5erfc
((

ln αL − μln αL

)
/
(√

2σln αL

))
inferred by the

method of moments, that is, with the parameters μln αL
=

ln
(
〈αL〉2/

√
〈αL〉2 − σ 2

αL

)
and σ 2

ln αL
= ln

(
1 + σ 2

αL
/〈αL〉2

)

based on the values of mean 〈αL〉 and standard variation
σαL

of Table 1. The fit in Figure 1 is quite satisfactory,
though other distributions might have been fitted as well.

Review of Transverse Macrodispersivity Field Data
There is no theoretical model relating transverse dis-

persivity αT ,V �αL to the heterogeneous aquifer struc-
ture. This makes the collection of field data even more
relevant to applications. Unfortunately, the data are even
scarcer than those of αL due to the difficulty of identifying
the values from solute plume measurements. Additionally,
nonstationary velocity fields due to annual/seasonal water
table fluctuations may sometimes impact a reliable estima-
tion of dispersivity, especially the transverse vertical one.
Vertical velocity gradients increase the plume spreading,
implying a high transversal dispersion. However, lump-
ing this effect into αV is not appropriate, as it is not a
consequence of the heterogeneous soil structure.

Zech et al. (2019) continued the work of Zech
et al. (2015) for transverse dispersivities αT ,V by a
similar procedure: starting from the collection of Gelhar
et al. (1992), reducing to reliable data only and adding
observation data from the period 1992 to 2018. The
final result, summarized in Zech et al. (2019, Tab. 2),

contains transverse horizontal values αT from nine sites
and transverse vertical values αV from eight sites. They
are related to six intensively studied sites (Table B1), with
five more values from sites of moderate information level
(Table B2) and two additional values based on steady state
plume analysis at two sites.

A main conclusions of Zech et al. (2019, Fig. 3) was
that the ratio αL/αT varies considerably in the range of 4 to
1300, rendering the arbitrary choice of the value adopted
in many applications (often 10:1) quite doubtful. The ratio
αT /αV was found to be in the range of 2 to 44, with one
exception for which it was smaller than unity.

Despite data scarcity, amalgamation of field data still
offers a preferable alternative of choosing a value for a
site where no observed data are available. The mean of all
values of αT is about 0.05 m while the one based on the
three highly reliable value is 0.03 m. Similarly, the mean
for all αV values is 0.011 m while for the two reliable
ones it is 0.0018 m. These values apply to aquifers of
weak to moderate log-conductivity variance (σ 2

Y � 1.2).
This limitation as well as the small number of sites and
the uneven distribution make these values as indicative at
best.

Guidelines for Selecting and Employing
Macrodispersivities in Applications

Solving groundwater flow and transport numerically,
typically makes use of the groundwater flow equation and
the ADE. Usually, the spatial variability of the hydraulic
conductivity K cannot be resolved over the entire domain
at the desired level of discretization (due to data scarcity).
Thus, the effect of heterogeneity on plume spreading is
captured by incorporating macrodispersivities in the ADE
whose values are typically guessed. In absence of data,
common practice is to use “thumb rules” or the “universal
scaling,” which was shown to be erroneous and to lead to
unwarranted large rates of spreading. Furthermore, large
values of αL are at times chosen to ensure stability of
simulations. We propose an alternative strategy based on
the theoretical background (see Appendix A) and the field
data presented in Appendix B.

Selection of αL
We suggested using the first order relationship αL =

σ 2
Y Ih as a reasonable approximation of longitudinal

macrodispersivity. However, the field characterization
data needed to estimate the values of σ 2

Y and I h are
generally scarce, especially for the preliminary transport
prediction which is often of interest. Sometimes it is
possible to estimate σ 2

Y from samples extracted along
one or more wells. However, the correlation length I h

is more difficult to estimate as it requires the availability
of a few wells at different distances. Still, the value of
σ 2

Y is indicative of the level of aquifer heterogeneity and
may help to attribute it to the one of the three groups
of Table 1. In a rough division weak, medium and high
heterogeneity are characterized by σ 2

Y < 1, 1 < σ 2
Y < 2,

σ 2
Y > 2, respectively.
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Figure 2. Conceptual sketches of deposition elements for different degrees of heterogeneity based on sedimentological
descriptions (modified after Heinz 2001).

After selecting a heterogeneity level (as defined pre-
viously), further analogy with the geological makeup of
one of the aquifers belonging to the group may help
in adopting the corresponding αL. Thereby, an under-
standing of the sedimentological formation processes can
be helpful. The heterogeneity structure of an aquifer is
determined by the deposition processes prevailing during
its genesis. Most relevant factors are the type of sedi-
ments available, the size of the depositional environment
and the frequency and energy of subsequent discharge
events (Heinz 2001). Accordingly, it can be expected that
stronger and more frequent events lead to more heteroge-
neous aquifer deposits. Figure 2 depicts three conceptual
sedimentological sketches of aquifer deposits from weak
to medium to high heterogeneity which may be related to
the geologic setting of the site under investigation.

If the detailed sedimentological situation is unclear,
the values of αL of Table 1 may be used as a first
choice. It is emphasized that the collection of the field
data covers values of σ 2

Y � 3 and for higher values it is
only the geological characterization of Table B2 which
may help.

In many common circumstances, neither estimates
of σ 2

Y nor I h are available for the specific aquifer.
However, the type of material (sand, gravel, silt/clay)
and the proportions could be assessed. In such a case,
we recommend the selection of the group based on
the division of Section “Amalgamation of Longitudi-
nal Macrodispersivity Field Data” and adopting the
appropriate range of values of Table 1. While this is
an approximate procedure, it is surmised that it is more
rational than the other aforementioned ones.

It is worthy to recall the limitations of employing αL

in modeling transport by an ADE. First, it was assumed
that the numerical blocks are of such large dimensions
relative to I h and I v so that the effect of K -variability
within the blocks is captured by αL. When this is not the
case and part of K variability is resolved, that is, the vari-
ability of conductivity K can be explicitly described in
the numerical model, αL has to be diminished by using
the concept of block dispersivity (e.g., Rubin et al. 1999,
2003; de Barros and Rubin 2011; Herrera et al. 2017).
This requires knowledge of the magnitude of the correla-
tion scale I h , which is difficult to obtain from measure-
ments, being typically scarce in the horizontal direction,
but may be estimated from Table B1 on the basis of the

description of the aquifer material, or by dividing the
asymptotic αL of Table 1 by the estimated value of σ 2

Y .
Second, we recall that the predicted concentration is the
mean one 〈C 〉 and not the local C ; the latter, and in
particular Cmax , is influenced by pore-scale dispersion,
whose impact was not considered here. Thus, compar-
ing measured and predicted values of C shall be done
with this reservation in mind. Third, additional sources
of uncertainty are the imprecise knowledge of the source
concentration distribution, the mean velocity U, derived
from the numerical solution of the flow equations, and the
effect of chemical fluid–rock interactions like adsorption,
decay etc. In view of these considerations, it is surmised
that selecting an approximate, but field data based, value
of αL is definitely justified. The mean concentration field
can be used in order to predict more robust measures
of solute plumes like the spatial moments, the longitu-
dinal mass distribution and the mass arrival at control
planes.

Selection of αT and αV
The values of transverse dispersivity which have to

be plugged in the ADE, are much smaller than αL and
are subjected to large uncertainty. The scarce field data
recalled earlier may still be of help. Thus, they indicate
that the choice of αT as a prescribed fraction of αL is not
warranted and it is preferable to select an absolute value
in the range of 3 to 5 cm, at least for aquifers of weak to
medium heterogeneity. As for αV , it may be assumed to
be roughly αT /10.

For sites with significant temporal water level fluc-
tuations, it is not recommended to artificially increase
transverse macrodispersivity values. Instead, the nonsta-
tionary flow field should be included to the numerical
model setting.

It is emphasized that the rate of transverse spread-
ing may be augmented or even overtaken by numerical
dispersion. Indeed, though it is customary in numeri-
cal solutions to adopt blocks of smaller vertical size
than longitudinal, they still are large compared to the
corresponding heterogeneity scales. These considerations
strengthen the conclusion that prediction of transport
measures like averaged vertical concentration or longi-
tudinal mass distribution, which are not sensitive to αV

or αT respectively, are more reliable than that of local
concentration.
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Illustrative Example
We discuss here a simple example in which we

apply the guidelines for the selection of longitudinal
macrodispersivity αL in a groundwater model. It is not
meant to assess the accuracy of prediction, but rather to
illustrate application to a particular case. Furthermore, we
demonstrate how to use the dispersivity standard deviation
in order to carry out a simple uncertainty analysis.

We considered an instantaneous injection of a nonre-
active solute within a volume of small size with respect to
the travel distance, in a relatively weakly heterogeneous
aquifer. We choose to derive the longitudinal mass distri-
bution m(x1, t ;αL) and the cumulative one M (x1, t ;αL)
(Appendix A, Equation A6) at a few times since injection
(snapshots).

For the sake of illustration we considered an aquifer
similar to the Cape Cod experimental site (Garabedian
et al. 1991), that is, a porous formation characterized
by medium to coarse sand, with some gravel overlying
silty sand and till. The reference to Cape Cod, one of
the most studied experimental sites to date, enables us
to compare results with the large body of available site
information. In this exercise, we assume that only U is
known, and equal to the one observed during the Cape
Cod experiment (U = 0.42 m/d ), and our task is to predict
the longitudinal mass distribution m(x1;t) at two time
instances, t = 203 d and t = 461 d, respectively. The
two snapshots were selected as representative of transport
at the end of the experiment and at an intermediate time
instance. Since we do not deal here with the issues related
to the numerical implementation of the flow model, for
example, block-scale and numerical dispersion, we adopt
a fully analytical approach focused on illustrating the
selection of macrodispersivity and its impact. Although,
analytical expressions come with assumptions, such as
uniform flow and homogeneous soil structures, these
aspects can be assumed fulfilled for the examples as
the use of macrodispersivity covers the effect of aquifer
heterogeneity on transport and experimental observations
showed that the mean flow direction is constant.

The analytical solutions for the longitudinal mass
distribution are given by Equation A6, for the density

m and cumulative mass M , respectively. In line with
the approximations suggested above, the asymptotic value
of the second spatial moment in longitudinal direction is
X 11 = 2αLUt . Both, m and M are subjected to uncertainty
because of the imprecise knowledge of αL as reflected by
the range of values of Table 1. We proceed with deriving
m and M as random variables by regarding αL as random
reflecting parametric uncertainty.

Following the suggested approach, the longitudinal
macrodispersivity αL is chosen from Table 1 in the cat-
egory “weak,” pertaining to the aquifer under considera-
tion; this leads to the mean and the standard deviation
(SD) of the dispersivity, 〈αL〉 = σαL

= 1.1 m. Subse-
quently, we concentrate on the PDF of m(x1, t ;αL) for
fixed x1 and t , which can be derived by the relationship
f (m) = f (αL)[dm(x1, t ;αL)/dαL]−1 with αL(m) obtained
from the inversion of Equation A6.

Along the lines of Section “Amalgamation of Lon-
gitudinal Macrodispersivity Field Data”, we select for
f (αL) the lognormal distribution, with the parameters

μln αL
= ln

(
〈αL〉2/

√
〈αL〉2 − σ 2

αL

)
= −0.25 and σ 2

ln αL
=

ln
[
1 + σ 2

αL
/〈αL〉2

] = 0.69. We now derive f (m) for the
selected two values of time and for varying x1. Rather
than inverting Equation A6 numerically for each x1, we
preferred to use a procedure similar to Monte Carlo simu-
lations: 1000 values of αL were randomly generated from
the lognormal distribution and subsequently plugged into
m and M of Equation A6 for a large number of x1 values.
Because of the rather large uncertainty embedded in the
αL determination, performing the uncertainty analysis in
the results is a highly recommended procedure, regardless
of the particular method employed (Monte Carlo in this
particular example).

In Figure 3, we represent m and M , respectively, as
function of distance from the source, for times t = 203
and 461 days since injection; the median prediction is
the thick line, while the lower and upper lines represent
the 10 and 90% quantiles, respectively. We see that
the range of uncertainty (shaded area) is rather broad,
which is expected from the value of the coefficient of
variation CV = σαL

/ 〈αL〉 = 1 for the values of Table 1.

Figure 3. Illustration example for an instantaneous injection in a weakly heterogeneous aquifer: (a) longitudinal mass
distribution m and (b) cumulative longitudinal mass distribution M at times 203 and 461 d from injection. Red lines:
median predictions; blue lines: 10th and 90th percentiles; black dots in (b): observations from the Cape Cod experiment.
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As discussed before, uncertainty should decrease for the
classes of “medium” and “high” heterogeneity, given
a decreasing trend in CV . Figure 3b also depicts
the experimental results for the Cape Cod experiment
(Ezzedine and Rubin 1997). The good agreement with the
median M is expected since the value of αL = 0.96 m of
Table B1 for Cape Cod is close to the mean 〈αL〉 = 1.1 m
of the class. The average predictions, together with the
uncertainty bands, permit a more meaningful analysis
and management of the contamination event. Similar
analyses can be done with other relevant quantities, like
for example, the breakthrough curve (BTC) at a given
control plane, that can be used for assessment of risk
(early limb of the curve) and remediation (tail). The same
approach can be adopted in case a numerical model is
employed for the analysis of the quantities of interest.

While m represents the relative mass in a cross
section of the plume at x1, the distribution of the
mean concentration in space 〈C (x1, x2, x3, t)〉 can be
obtained in an approximate manner by assuming that
it has a Gaussian distribution in the x2, x3 plane. It
is determined by the rate of spreading governed by
the transverse horizontal αT and transverse vertical αV

macrodispersivities in the spirit of the previous section.
As previously discussed, the suggested values for the

macrodispersivity of Table 1 should be used with caution,
depending on the particular goal at hand. While αL can
be effective for estimating aggregated quantities like the
BTC or the longitudinal mass distribution, as shown in
the above example, it may not be a reliable nor cautionary
parameter for prediction of local variables, like the point
concentration. The latter is greatly influenced by the
complex intertwining of local scale dispersion/diffusion
and large-scale advection, beyond the simple concept of
macrodispersivity. Employing the latter in the prediction
of the maximum local concentration in the aquifer C max (a
quantity of paramount importance for local risk analysis)
may lead to severely underestimated predictions. This
important feature was illustrated and discussed in previous
papers, for example, Fiori (2001), Boso et al. (2013), and
de Barros and Fiori (2021).

Summary and Conclusions
It is common to model solute transport by groundwa-

ter with the aid of an ADE (advection dispersion equation)
for concentration, in which the solute spreading is quanti-
fied by macrodispersivity coefficients αL,T ,V (longitudinal,
transverse horizontal, transverse vertical, respectively).
We refer here to natural gradient flow and conservative
solutes. Macrodispersivity values are much larger than
laboratory observed pore-scale dispersion coefficients;
they quantify the impact on flow and transport of the
ubiquitous spatial variability of the hydraulic conductiv-
ity K . Longitudinal macrodispersivity αL, can be related
under a few assumptions to the log-conductivity statistics
mean, variance and horizontal integral scale. The concen-
tration predicted by the ADE is the mean one and it differs
from the local one, which is influenced by the pore-scale

dispersivities. It leads, however, to prediction of robust
global transport attributes like plumes spatial moments,
longitudinal mass distribution or breakthrough curves.

The estimation of the longitudinal macrodispersivity
αL, can be based either on a tracer test at field scale or
thorough characterization effort of the log-conductivity
statistics; both are time and cost-intensive. Consequently,
macrodispersivity values are selected by practitioners on
an ad hoc basis. For instance, one such a procedure implies
that αL increase with the plume travel distance following
an empirical “universal scaling law”. However, analysis
of reliable field data (Zech et al. 2015) has revealed that
this leads to overestimation of rate of spreading; in reality
αL stabilizes after a transient stage at a constant value,
which is aquifer specific.

This study is the first to provide a strategy for a
preliminary determination of macrodispersivity when, for
instance, only soft data are available. We provide a set
of longitudinal dispersivities—mean values and standard
deviations, which serve for uncertainty analysis—as
function of the degree of aquifer heterogeneity. The
values are based on the most reliable estimates of
macrodispersivity αL from field data. Tens of transport
experiments available in the literature were thoroughly
analyzed by Zech et al. (2015) and used here. Based
on these data, a division of aquifers into three classes is
proposed: weak, medium and highly heterogeneous. Each
class can be roughly characterized by the relative amounts
of gravel, sand and silt/clay present in the aquifer. For
each class, the mean and variance of αL, which fitted
lognormal distributions, were identified from the field
data. They can serve as a guide for selecting values of
αL in transport models which use the ADE, especially for
preliminary assessments and in the absence of detailed
site information.

Much less data and theoretical developments are
available for estimating transverse dispersivities αT and
αV , which are much smaller than αL. Nevertheless, a
few indicative values based on the limited database are
suggested for applications.

Summarizing, the data presented in the manuscript
provide practitioners with a guideline to select preliminary
estimates of macrodispersivity for field-scale transport
models, even when only soft data on aquifer structure
and the level of heterogeneity is available. These estimates
are based on reliable field data rather than rule of thumb.
Consequently, their use may lead to an improved overall
solute transport prediction at a given site.
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Appendix A
The topic of transport modeling in general and

macrodispersion in particular is covered by a large
body of literature and even a brief review is beyond
the scope of the paper. Nevertheless, we present a few
basic tenets for establishing the nomenclature and the
common ground for its practical application. The choice
is selective and reflects our views and we rely primarily
on our recent works.

The Heterogeneous Aquifer Conductivity Structure
Field studies indicate (e.g., Freeze 1975; Delhomme

1979; Gelhar 1993) that for sedimentary formations
the hydraulic conductivity univariate distribution is
approximately lognormal, that is, Y = ln K is normal and
characterized by the mean 〈Y 〉 = ln KG (the geometric
mean) and the variance σ 2

Y . Thus, σ 2
Y is the measure of

heterogeneity and its value served us as a criterion to
classify aquifers as mildly, moderate or highly hetero-
geneous. A further standard assumption is that Y (x) is
stationary and of two point axi-symmetric covariance
CY = σ 2

Y ρ (R, rz) where R and rz are the horizontal and
vertical lag components, respectively. Furthermore, the
auto-correlation ρ is assumed to be of finite horizontal I h

and vertical I v integral scales, with the anisotropy ratio
f = I v /I h < 1. If Y is assumed to be multi-Gaussian,
the K structure is completely characterized by the four
parameters K G , σ 2

Y , I h , and f , for a given shape of ρ.
The derivation of these parameters from field data is
not addressed here. It is worth mentioning that there
are alternative models of heterogeneous structures, like
division into facies of a few discrete K values (Fogg
et al. 1998), but we limit the discussion here to sedimen-
tary formations with K regarded as continuous and for
which the macrodispersion concept is directly applicable.

Derivation of Local Concentration by Monte Carlo
Simulations

We consider a generic case of transport of a solute
plume of given initial concentration distribution C 0(a, 0)
within a volume V 0 (x = a ∈ V 0), of total mass M 0.
Here and in the sequel the resident local concentration
C is defined as one pertaining to the Darcian scale or
somewhat larger, say of a few decimeters, as measured for
instance by multilevel samplers along wells. It satisfies an
equation similar to (1)

∂C

∂t
+ V(x, t) · ∇C = DdL

∂2C

∂x2
1

+ DdT
∂2C

∂x2
2

+ DdV
∂2C

∂x2
3

(A1)

but with V the random velocity field obtained by solving
the flow equations in the heterogeneous medium.

A complete solution which is derived by flow and
transport models consists in predicting the fate of the
plume, that is, C (x, t) for t > 0. One of the prevailing
numerical methodologies in literature is performing
Monte Carlo simulations. It consists in generating mul-
tiple realizations of the conductivity field K (x), solving
the flow equations to derive V(x) and subsequently
solving the transport equation A1 to arrive at C in
each realization. Such solutions as well as field data
revealed indeed that the plume spreads considerably
primarily due to the advective term in Equation A1.
The pore-scale dispersive terms in Equation A1 have a
negligible effect on spreading but contribute to mixing
and dilution, primarily by DdV . In any case the random
local concentration is highly variable, with large coeffi-
cients of variation especially at the fringe of the modeled
plume.

The process described above is conceptually straight-
forward but it is fraught with difficulties and question
marks: the multiple numerical solutions of the flow and
transport equations requires considerable computational
resources with computational schemes having small
to negligible numerical diffusion stemming from the
approximation of the advective term; the solution is
still underlain by approximations, for example, the
assumed Y multi-Gaussianity, the imprecise knowledge
of the statistical parameters as identified by character-
ization in the field and the approximate information
on contaminant source. Besides, in many applications
the interest is in upscaled values of C rather than the
local ones. For instance, a pumping well averages the
concentration in a large volume of water in the capture
zone.

For these reasons the derivation of the flow and
transport solutions by Monte Carlo simulations is not
an attractive option for common applications to polluted
sites, which is our main concern; it may serve for
theoretical investigations or analysis of elaborate field
tests, which are not in the scope of this study. Instead,
approximate models which lead to solutions relevant to
applications were developed in the large body of literature
of the last four decades. A few such models, which serves
for illustration of the concept, are recapitulated briefly in
the following.

Approximate First-Order Solution for Mean Uniform
Flow

We adopt a few approximations relative to the full
numerical solution: (1) unbounded domain; (2) flow
is driven by a known constant mean head gradient
−J = (−J , 0, 0); (3) the mean velocity is given by
U = 〈q〉θ = K effJ where the constant porosity θ and
the effective conductivity K eff are assumed to be known;
K eff is derived either by pumping tests or by models
which relate it to σ 2

Y and f (Zarlenga et al. 2018); (4)
the stationary velocity field, the particles trajectories
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and the macrodispersivity are derived by a first-order
approximation in σ 2

Y .
We consider first injection in the resident mode,

the simplest case being C 0 = M 0/(θV 0) = const, and
detection by resident concentration C (x, t). The flux
averaged concentration mode is discussed briefly in the
sequel.

The solution considered here was obtained in the past
by the Lagrangean approach, that is, following solute
particles along trajectories (Dagan 1989; Gelhar 1993;
Rubin 2003). We present herein only some final results.
If the pdf of the solute particles displacements is assumed
to be Gaussian, which is consistent with the first-order
approximation, the mean resident local concentration
satisfies the transport equation

∂〈C〉
∂t

+ U
∂〈C〉
∂x1

= D11
∂2〈C〉
∂x2

1

+ D22
∂2〈C〉
∂x2

2

+ D33
∂2〈C〉
∂z2

(A2)

where Dii , i = 1, 2, 3 is the diagonal dispersion tensor,
whose components are given by:

D11 = αLU + DdL D22 = αT U + DdT

D33 = αV U + DdV (A3)

where αL is the longitudinal macrodispersivity and αT and
αV are the transverse horizontal and transverse vertical
counterparts, while DdL,dT ,dV are the pore-scale dispersion
terms. The latter are often neglected in applications due to
the small, negligible, impact on the mean concentration.
In addition, U is the mean Eulerian velocity aligned
along x1. As mentioned before, the local C is subjected
to large uncertainty and 〈C 〉 is not representative of C
in the given realization of the aquifer, as encountered
in applications. Thus, 〈C 〉 cannot be compared directly
with measurements or for prediction of the actual local
concentration. In principle, 〈C 〉 can be obtained from the
data, for example by using a moving average within a
volume with size of a few integral scales or the definition
of a suitable kernel function weighting the measurements
according to their distance from the estimation point, but
this requires a very large number of measurements in
space and time, which is rather an exceptional occurrence.
The use of 〈C 〉 to derive upscaled and robust measures is
discussed in the following.

Longitudinal Macrodispersivity
One of the main achievements of the stochastic

theory is the derivation of the relationship between the
longitudinal macrodispersivity αL and the permeability
statistical parameters for the formations of 3D structures
considered here. It was achieved by the Lagrangean
theory, with αL growing with travel time from zero to the
asymptotic value αL = σ 2

Y Ih after a travel distance L = Ut
of a few integral scales I h (Dagan 1989). The transient

Figure A1. Evolution of preasymptotic longitudinal
macrodispersivity as function of travel distance L rela-
tive to integral scales I h according to Equation A4 for three
values of anisotropy rate f . The y-axis shows the relative
value to the asymptotic αL = σ 2

Y · Ih .

preasymptotic period can be described approximately by
the formula of Dagan and Cvetkovic (1993):

αL = σ 2
Y Ih

[
1 − exp

(−tUb(f )

Ih

)]

b(f ) = 1 + 19f 2 − 10f 4

16
(
f 2 − 1

)2

−
f

(
13 − 4f 2

)
arcsin

(√
1 − f 2

)

16
√

1 − f 2
(
f 2 − 1

)2 (A4)

with b(f ) varying between b = 8/15 (for isotropy f = 1)
and b = 1 (for stratified formation, f → 0). The result
is based on advection by the Eulerian velocity field, with
neglect of the much smaller contribution of the pore-scale
dispersion. Here f stands for the anisotropy coefficient,
the ratio between the vertical and longitudinal integral
scales, respectively. The evolution of the preasymptotic
αL (Equation A4) with distance is displayed in Figure A1.

The variation of αL with travel time can be divided
into three periods: for t � I h /U , αL grows linearly with
time as appropriate to stratified aquifers; an intermediate
period and ultimately, the asymptotic result αL = σ 2

Y Ih is
attained for t > I h /U , which was obtained also by Gelhar
and Axness (1983) by a different approach. Equation A4
implies nonlocality as αL depends on the travel time
t from the source. However, at the large time limit it
localizes and reaches Fickianity.

The simple asymptotic first-order result is very robust
as it does not depend on the anisotropy ratio f and
the shape of the auto-correlation ρ. Furthermore, it was
shown recently by Fiori et al. (2017) that it is not
limited to weakly heterogeneous aquifers and it applies
also to moderate and highly heterogeneous ones, when
upscaled measures are used for comparison. Furthermore,
it is compared with values pertinent to a few elaborate
field tests in Section “Analysis of Macrodispersivity Field
Data,” with satisfactory agreement.

Transverse Macrodispersivities
The transverse horizontal and vertical macrodisper-

sivities αT and αV (Equation A2) are much smaller than
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the longitudinal one, precisely like the case of pore-scale
dispersivities. And experimental values are also scarce
(Zech et al. 2019). In fact, the asymptotic first-order
theoretical solution is αT,V → 0, that is, the prevailing
finite values are related to nonlinear effects in σ 2

Y . The
dependence of αT ,V on the heterogeneous structure and
pore-scale dispersion is still a topic of active research.

Upscaled Transport Measures
Model predictions are to be applied in practice to

a given aquifer, that is, to a given single realization of
the conductivity structure. Thus, it is desirable to derive
transport measures which are robust such that ergodicity
(exchange of ensemble and one realization values) can be
invoked.

Plume Spatial Moments
These are basic parameters to quantify the position

of the plume and its extent. Their prediction provides
the most fundamental information on the solute spatial
distribution. For an initial plume of mass M 0 within
a volume V 0, which is of large size relative to the
heterogeneity scales of I h and I v such that ergodicity
supposedly applies, we arrive from Equation A2 to the
following classical results: the centroid of the plume X1

moves with the mean velocity U while the central second
spatial moments Xii (i = 1, 2, 3) satisfy dXii/dt = 2αkU ,
with k = L, T , V for i = 1, 2, 3, respectively.

Integration, with Equation A4 taken into account,
yields for the longitudinal moment X11 = X11(0) +
2σ 2

Y IhU
[
t + (Ih/Ub(f )) (exp (−tUb(f )/Ih) − 1)

]
. Thus,

the assumed ergodic X11 grows nonlinearly from its
initial value to the asymptotic Fickian linear dependence
X11 → 2σ 2

Y IhUt. In contrast, due to their low values and
lack of an analytical solution, we may assume X22,33

∼=
X22,33(0) + 2αT,V Ut.

These relationships were frequently used in the past
in order to derive the approximate values of U and αL

from measured concentrations of plumes and many of the
values cited in Table B1 were based on such a procedure.
The same is true for the much less available measurements
of αT ,V .

Mass Arrival at Control Planes and Longitudinal Mass
Distribution

Another robust measure of transport is the mass
arrival M tot as function of time at control planes normal
to the mean flow direction, at distance x1 from the initial
plume centroid—the ratio M (x1, t) = M tot /M 0 is known
as the BTC, the breakthrough curve. This is a parameter
of practical use for prediction for instance of the solute
discharge into a reservoir or its capture by wells. An asso-
ciated measure is m(x1, t) = −∂M /∂x1, the longitudinal
distribution of the relative mass; it is also a measure of
interest as it quantifies the plume spread in the mean flow
direction. Again, for an initial plume large at the scales
of I h and I v , ergodicity can be invoked and m ∼= 〈m〉 =
(1/M0)

∫ ∞
−∞

∫ ∞
−∞〈C(x, t)〉θ dx2dx3. Thus, integration of

measured concentration in vertical bands was used in the

depiction of m in the MADE experiment (Adams and
Gelhar 1992).

By using Equation A2 we arrive at

∂m

∂t
+ U

∂m

∂x1
= DL

∂2m

∂x2
1

DL = αLU (A5)

and a similar equation can be written for M , as well.
Equation A5 implies two major simplifications: unlike
〈C (x, t)〉 (Equation A2) M and m depend only on αL

and they are robust and can be applied with confidence to
a given aquifer for a sufficiently large initial plume. Thus,
for M 0 concentrated in a volume V 0 of small size with
respect to the travel distance L = Ut the simple solutions
of Equation A5 for m and M are the classical Gaussian
ones:

M = 1

2
erfc

(
x1 − Ut√

2X11

)

m = 1

2
√

πX11
exp

(

−(x1 − Ut)2

2X11

)

(A6)

The results so far were for resident concentrations.
As summarized in the classical paper of Kreft and
Zuber (1978) on the solution of the ADE with constant
coefficients, the results may differ for flux proportional
injection and detection. These modes are of interest for
transport in aquifers with injection by wells, as carried out
for instance in controlled field tests like MADE. Indeed in
such a case the solute distribution of the mass discharge
along the well is proportional to the local K . Similarly,
detection is flux proportional for pumping wells. It turns
out that in this case the appropriate independent variable
is the travel time τ from the source to the control plane
rather than the displacement X 1 and a large body of
literature was devoted to its statistical properties, starting
from Shapiro and Cvetkovic (1988). An interesting final
result is that the BTC at a well and the solute flux through
a control plane are both Inverse Gaussian, quantified with
the aid of the mean travel time τ = x1/U and the variance
σ 2

τ , see for instance analysis of numerical simulations by
Jankovic et al. (2003) as well as impact on mean plume
velocity by Dagan (2017) and application to MADE by
Zech et al. (2021).

Appendix B
Tables B1 and B2 contain a summary of the field data

with estimates of reliable αL from transport experiments
available in the literature. Data is grouped into three
classes of aquifer heterogeneity: weak, medium and highly
heterogeneous. Furthermore, we grouped data according
to the levels of available information κ for specifying
aquifer heterogeneity, where κ = 3 refers to intensively
studied sites (Table B1), κ = 2 to moderate and κ = 1
refers to little information (both Table B2). All intensively
studied sites (κ = 3) come with a detailed specification
of all relevant hydrogeological parameters, a geostatistical
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analysis of hydraulic conductivity observations and typ-
ically conductivity estimates from multiple observation
methods. Typically, these are well known research sites.
A moderate level of information (κ), refers to sites
where most of the hydrogeological parameters, such
as mean conductivity, porosity and flow velocity are
available along with some soft data such as a description
of the aquifer material. We grouped sites as little infor-
mation (κ = 1) when there was hardly any additional
information on the aquifer structure. Note, that κ is a
subjective measure by the authors which depends on the
hydrogeological information available in documentation.
Particularly for a low information level (κ = 1) it can be
an artifact, as information might be available, but is not
published.

Although reporting the plume travel distance L along
each αL (by Gelhar et al. 1992) has lead to erroneous
conclusions such as “universal scaling,” we provide it here
as well. It indicates if the asymptotic regime has been
reached since macrodispersivity depends on the scale of
heterogeneity covered by the plume and so only indirectly
on the distance L.

Note some differences to values reported by Zech
et al. (2015). The values for Grindsted (Bjerg et al. 1992;
Petersen et al. 1998) (Table B1) are new, being added
along the results of Zech et al. (2019). The value of
αL = 11 m for the Horkheimer Insel differs to the
one reported in Zech et al. (2015). Since we focus on
asymptotic values, we make use of the maximum values
reported by Ptak and Teutsch (1994) and used in Fig.
5 of Zech et al. (2015). The average value of αL = 6 m
reported in Zech et al. (2015) contains values from shorter
travel distances, which are presumably pre-asymptotic
given the strongly heterogeneous aquifer structure. The
value for the Zeitz site (Table B2) was adapted from
αL = 0.6 to αL = 2 as Gödeke et al. (2006) reports: “The
dispersivities calculated using moment analysis ranged
between 0.5 and 3.85 m.” The value for the Burnham
Aquifer (Pang et al. 1998) was adapted to the values
reported for the analysis with an equilibrium model rather
than a nonequilibrium model.

Additional information on aquifer statistics for the
sites with moderate information level (Table B2) are only
available for: Zeitz, σ 2

Y = 1.84; Testfeld Süd, σ 2
Y = 2.1;

Grenoble, σ 2
Y = 1.21, I h = 5 m; and the Lower Glatt

Valley where authors consider the aquifer to have similar
geostatistics as the Aeflingen site (Hufschmied 1986) with
σ 2

Y = 2.15 and I h = 15–20 m.
Additional data on transverse dispersivities are

available for four sites of moderate information level
(Table B2): Bonnaud, αT = 0.11; Cambridge site,
αT = 0.01 and αV = 0.004; Hebei, αT = 0.0013; and
Grenoble αT = 0.2. Zech et al. (2019) further report the
values from Sjoelund, Denmark (Tuxen et al. 2003; Prom-
mer et al. 2006) of αV = 0.005 m (R2) and Osterhofen
(Maier and Grathwohl 2006) of αV = 0.032 (R2) which
were identified via steady state plume analysis (without
providing estimates of αL).
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