90 research outputs found

    A scanning microcavity for in-situ control of single-molecule emission

    Full text link
    We report on the fabrication and characterization of a scannable Fabry-Perot microcavity, consisting of a curved micromirror at the end of an optical fiber and a planar distributed Bragg reflector. Furthermore, we demonstrate the coupling of single organic molecules embedded in a thin film to well-defined resonator modes. We discuss the choice of cavity parameters that will allow sufficiently high Purcell factors for enhancing the zero-phonon transition between the vibrational ground levels of the electronic excited and ground states.Comment: 8 page

    New bounds for the free energy of directed polymers in dimension 1+1 and 1+2

    Full text link
    We study the free energy of the directed polymer in random environment in dimension 1+1 and 1+2. For dimension 1, we improve the statement of Comets and Vargas concerning very strong disorder by giving sharp estimates on the free energy at high temperature. In dimension 2, we prove that very strong disorder holds at all temperatures, thus solving a long standing conjecture in the field.Comment: 31 pages, 4 figures, final version, accepted for publication in Communications in Mathematical Physic

    Engineering disorder in three-dimensional photonic crystals

    Full text link
    We demonstrate the effect of introducing controlled disorder in self-assembled three-dimensional photonic crystals. Disorders are induced through controlling the self-assembling process using an electrolyte of specific concentrations. Structural characterization reveals increase in disorder with increase in concentrations of the electrolyte. Reflectivity and transmittance spectra are measured to probe the photonic stop gap at different levels of disorder. With increase in disorder the stop gap is vanished and that results in a fully random photonic nanostructure where the diffuse scattered intensity reaches up to 100%. Our random photonic nanostructure is unique in which all scatters have the same size and shape. We also observe the resonant characteristics in the multiple scattering of light.Comment: 13 pages, 3 figure

    Fluctuations in the coarsening dynamics of the O(N) model: are they similar to those in glassy systems?

    Full text link
    We study spatio-temporal fluctuations in the non-equilibrium dynamics of the d dimensional O(N) in the large N limit. We analyse the invariance of the dynamic equations for the global correlation and response in the slow ageing regime under transformations of time. We find that these equations are invariant under scale transformations. We extend this study to the action in the dynamic generating functional finding similar results. This model therefore falls into a different category from glassy problems in which full time-reparametrisation invariance, a larger symmetry that emcompasses time scale invariance, is expected to be realised asymptotically. Consequently, the spatio-temporal fluctuations of the large N O(N) model should follow a different pattern from that of glassy systems. We compute the fluctuations of local, as well as spatially separated, two-field composite operators and responses, and we confront our results with the ones found numerically for the 3d Edwards-Anderson model and kinetically constrained lattice gases. We analyse the dependence of the fluctuations of the composite operators on the growing domain length and we compare to what has been found in super-cooled liquids and glasses. Finally, we show that the development of time-reparametrisation invariance in glassy systems is intimately related to a well-defined and finite effective temperature, specified from the modification of the fluctuation-dissipation theorem out of equilibrium. We then conjecture that the global asymptotic time-reparametrisation invariance is broken down to time scale invariance in all coarsening systems.Comment: 57 pages, 5 figure

    Quenched large deviation principle for words in a letter sequence

    Full text link
    When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the \emph{annealed} large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the \emph{quenched} LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an \emph{algebraic} tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established.Comment: 41 pages, 2 figures. Acronym LDP spelled out in title, main result strengthened to cover more general "letter" spaces, application to collision local times removed (this part will become a separate manuscript

    Thermodynamic formalism for systems with Markov dynamics

    Full text link
    The thermodynamic formalism allows one to access the chaotic properties of equilibrium and out-of-equilibrium systems, by deriving those from a dynamical partition function. The definition that has been given for this partition function within the framework of discrete time Markov chains was not suitable for continuous time Markov dynamics. Here we propose another interpretation of the definition that allows us to apply the thermodynamic formalism to continuous time. We also generalize the formalism --a dynamical Gibbs ensemble construction-- to a whole family of observables and their associated large deviation functions. This allows us to make the connection between the thermodynamic formalism and the observable involved in the much-studied fluctuation theorem. We illustrate our approach on various physical systems: random walks, exclusion processes, an Ising model and the contact process. In the latter cases, we identify a signature of the occurrence of dynamical phase transitions. We show that this signature can already be unravelled using the simplest dynamical ensemble one could define, based on the number of configuration changes a system has undergone over an asymptotically large time window.Comment: 64 pages, LaTeX; version accepted for publication in Journal of Statistical Physic

    Unrestricted generation of pure two-qubit states and entanglement diagnosis by single-qubit tomography

    Get PDF
    We present an experimental proof-of-principle for the generation and detection of pure two-qubit states which have been encoded in degrees of freedom that are common to both classical-light beams and single photons. Our protocol requires performing polarization tomography on a single qubit from a qubit pair. The degree of entanglement in the qubit pair is measured by concurrence, which can be directly extracted from intensity measurements – or photon counting – entering single-qubit polarization tomography

    Impact of gastrointestinal side effects on patients’ reported quality of life trajectories after radiotherapy for prostate cancer: Data from the prospective, observational pros-it CNR study

    Get PDF
    Radiotherapy (RT) represents an important therapeutic option for the treatment of localized prostate cancer. The aim of the current study is to examine trajectories in patients’ reported quality of life (QoL) aspects related to bowel function and bother, considering data from the PROState cancer monitoring in ITaly from the National Research Council (Pros-IT CNR) study, analyzed with growth mixture models. Data for patients who underwent RT, either associated or not associated with androgen deprivation therapy, were considered. QoL outcomes were assessed over a 2-year period from the diagnosis, using the Italian version of the University of California Los Angeles-Prostate Cancer Index (Italian-UCLA-PCI). Three trajectories were identified for the bowel function; having three or more comorbidities and the use of 3D-CRT technique for RT were associated with the worst trajectory (OR = 3.80, 95% CI 2.04–7.08; OR = 2.17, 95% CI 1.22–3.87, respectively). Two trajectories were identified for the bowel bother scores; diabetes and the non-Image guided RT method were associated with being in the worst bowel bother trajectory group (OR = 1.69, 95% CI 1.06–2.67; OR = 2.57, 95% CI 1.70–3.86, respectively). The findings from this study suggest that the absence of comorbidities and the use of intensity modulated RT techniques with image guidance are related with a better tolerance to RT in terms of bowel side effects

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF
    Background: The National Research Council (CNR) prostate cancer monitoring project in Italy (Pros-IT CNR) is an observational, prospective, ongoing, multicentre study aiming to monitor a sample of Italian males diagnosed as new cases of prostate cancer. The present study aims to present data on the quality of life at time prostate cancer is diagnosed. Methods: One thousand seven hundred five patients were enrolled. Quality of life is evaluated at the time cancer was diagnosed and at subsequent assessments via the Italian version of the University of California Los Angeles-Prostate Cancer Index (UCLA-PCI) and the Short Form Health Survey (SF-12). Results: At diagnosis, lower scores on the physical component of the SF-12 were associated to older ages, obesity and the presence of 3+ moderate/severe comorbidities. Lower scores on the mental component were associated to younger ages, the presence of 3+ moderate/severe comorbidities and a T-score higher than one. Urinary and bowel functions according to UCLA-PCI were generally good. Almost 5% of the sample reported using at least one safety pad daily to control urinary loss; less than 3% reported moderate/severe problems attributable to bowel functions, and sexual function was a moderate/severe problem for 26.7%. Diabetes, 3+ moderate/severe comorbidities, T2 or T3-T4 categories and a Gleason score of eight or more were significantly associated with lower sexual function scores at diagnosis. Conclusions: Data collected by the Pros-IT CNR study have clarified the baseline status of newly diagnosed prostate cancer patients. A comprehensive assessment of quality of life will allow to objectively evaluate outcomes of different profile of care
    • …
    corecore