197 research outputs found
Gold nanoparticles approach to detect chondroitin sulphate and hyaluronic acid urothelial coating
This study investigated the location of hyaluronic acid (HA)-and chondroitin sulphate (CS)-coated gold nanoparticles in rabbit bladder and evaluated gene expression of CD44, RHAMM and ICAM-1 receptors involved in HA and CS transport into the cell. Gold nanoparticles were synthesised by reduction of gold salts with HA or CS to form HA-AuNPs and CS-AuNPs. Bladder samples were incubated with CS-AuNPs and HA-AuNPs or without glycosaminoglycans. Transmission electron microscopy, optic microscopy and scanning electron microscopy were used to determine the location of the synthesised AuNPs. Real-time PCR was used to analyse expression of urothelial cell receptors CD44, RHAMM, ICAM-1, after ex vivo administration of CS-AuNPs and HA-AuNPs. We showed that HA-AuNPs and CS-AuNPs were located in the cytoplasm and tight junctions of urothelial umbrella cells; this appearance was absent in untreated bladders. There were no significant differences in gene expression levels for CD44, RHAMM and ICAM-1 receptors in treated versus control bladder tissues. In conclusion, we clearly showed the presence of exogenous GAGs in the bladder surface and the tight junctions between umbrella cells, which is important in the regeneration pathway of the urothelium. The GAGs-AuNPs offer a promising approach to understanding the biophysical properties and imaging of urothelial tissue
NUP98-fusion transcripts characterize different biological entities within acute myeloid leukemia: A report from the AIEOP-AML group.
In the last years, collaborative studies have joined to link the degree of genetic heterogeneity of acute myeloid leukemia (AML) to clinical outcome,1, 2 allowing risk stratification before therapy and guiding post-induction treatment of children with AML. So far, still half of these patients, whose disease is usually characterized by a grim prognosis, lack a known biomarker offering opportunities of targeted treatment
Fine Tuning of Ca(V)1.3 Ca2+ Channel Properties in Adult Inner Hair Cells Positioned in the Most Sensitive Region of the Gerbil Cochlea
Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency
and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca2+
inflow through CaV1.3 (L-type) Ca2+
channels. We
investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca2+
currents in IHCs positioned at
the middle turn (frequency ,2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near
physiological recordings conditions (body temperature and a Na+
based extracellular solution), we found that the
macroscopic Ca2+
current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only
partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a
very low steady-state open probability (Po: 0.024 in response to 500-ms depolarizing steps at ,218 mV). The value of Po
was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca2+
channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the Po and the mean burst duration were
smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to
express about 4 times more Ca2+
channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune CaV1.3
Ca2+
channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds
The lncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia
Abstract Background Long non-coding RNAs (lncRNAs) play a variety of cellular roles, including regulation of transcription and translation, leading to alterations in gene expression. Some lncRNAs modulate the expression of chromosomally adjacent genes. Here, we assess the roles of the lncRNA CASC15 in regulation of a chromosomally nearby gene, SOX4, and its function in RUNX1/AML translocated leukemia. Results CASC15 is a conserved lncRNA that was upregulated in pediatric B-acute lymphoblastic leukemia (B-ALL) with t (12; 21) as well as pediatric acute myeloid leukemia (AML) with t (8; 21), both of which are associated with relatively better prognosis. Enforced expression of CASC15 led to a myeloid bias in development, and overall, decreased engraftment and colony formation. At the cellular level, CASC15 regulated cellular survival, proliferation, and the expression of its chromosomally adjacent gene, SOX4. Differentially regulated genes following CASC15 knockdown were enriched for predicted transcriptional targets of the Yin and Yang-1 (YY1) transcription factor. Interestingly, we found that CASC15 enhances YY1-mediated regulation of the SOX4 promoter. Conclusions Our findings represent the first characterization of this CASC15 in RUNX1-translocated leukemia, and point towards a mechanistic basis for its action
Developmental Acquisition of a Rapid Calcium-Regulated Vesicle Supply Allows Sustained High Rates of Exocytosis in Auditory Hair Cells
Auditory hair cells (HCs) have the remarkable property to indefinitely sustain high rates of synaptic vesicle release during ongoing sound stimulation. The mechanisms of vesicle supply that allow such indefatigable exocytosis at the ribbon active zone remain largely unknown. To address this issue, we characterized the kinetics of vesicle recruitment and release in developing chick auditory HCs. Experiments were done using the intact chick basilar papilla from E10 (embryonic day 10) to P2 (two days post-hatch) by monitoring changes in membrane capacitance and Ca2+ currents during various voltage stimulations. Compared to immature pre-hearing HCs (E10-E12), mature post-hearing HCs (E18-P2) can steadily mobilize a larger readily releasable pool (RRP) of vesicles with faster kinetics and higher Ca2+ efficiency. As assessed by varying the inter-pulse interval of a 100 ms paired-pulse depolarization protocol, the kinetics of RRP replenishment were found much faster in mature HCs. Unlike mature HCs, exocytosis in immature HCs showed large depression during repetitive stimulations. Remarkably, when the intracellular concentration of EGTA was raised from 0.5 to 2 mM, the paired-pulse depression level remained unchanged in immature HCs but was drastically increased in mature HCs, indicating that the Ca2+ sensitivity of the vesicle replenishment process increases during maturation. Concomitantly, the immunoreactivity of the calcium sensor otoferlin and the number of ribbons at the HC plasma membrane largely increased, reaching a maximum level at E18-P2. Our results suggest that the efficient Ca2+-dependent vesicle release and supply in mature HCs essentially rely on the concomitant engagement of synaptic ribbons and otoferlin at the plasma membrane
Evidence and morality in harm-reduction debates: can we use value-neutral arguments to achieve value-driven goals?
It is common to argue that politicians make selective use of evidence to tacitly reinforce their moral positions, but all stakeholders combine facts and values to produce and use research for policy. The drug policy debate has largely been framed in terms of an opposition between evidence and politics. Focusing on harm reduction provides useful ground to discuss a further opposition proposed by evidence advocates, that between evidence and morality. Can evidence sway individuals from their existing moral positions, so as to “neutralise” morality? And if not, then should evidence advocates change the way in which they frame their arguments? To address these questions, analysis of N=27 interviews with stakeholders involved in drug policy and harm reduction research, advocacy, lobbying, implementation and decision-making in England, UK and New South Wales, Australia, was conducted. Participants’ accounts suggest that although evidence can help focus discussions away from values and principles, exposure to evidence does not necessarily change deeply held views. Whether stakeholders decide to go with the evidence or not seems contingent on whether they embrace a view of evidence as secular faith; a view that is shaped by experience, politics, training, and role. And yet, morality, values, and emotions underpin all stakeholders’ views, motivating their commitment to drug policy and harm reduction. Evidence advocates might thus benefit from morally and emotionally engaging audiences. This paper aims to develop better tools for analysing the role of morality in decision-making, starting with moral foundations theory. Using tools from disciplines such as moral psychology is relevant to the study of the politics of evidence-based policymaking
Audio-Visual Speech Timing Sensitivity Is Enhanced in Cluttered Conditions
Events encoded in separate sensory modalities, such as audition and vision, can seem to be synchronous across a relatively broad range of physical timing differences. This may suggest that the precision of audio-visual timing judgments is inherently poor. Here we show that this is not necessarily true. We contrast timing sensitivity for isolated streams of audio and visual speech, and for streams of audio and visual speech accompanied by additional, temporally offset, visual speech streams. We find that the precision with which synchronous streams of audio and visual speech are identified is enhanced by the presence of additional streams of asynchronous visual speech. Our data suggest that timing perception is shaped by selective grouping processes, which can result in enhanced precision in temporally cluttered environments. The imprecision suggested by previous studies might therefore be a consequence of examining isolated pairs of audio and visual events. We argue that when an isolated pair of cross-modal events is presented, they tend to group perceptually and to seem synchronous as a consequence. We have revealed greater precision by providing multiple visual signals, possibly allowing a single auditory speech stream to group selectively with the most synchronous visual candidate. The grouping processes we have identified might be important in daily life, such as when we attempt to follow a conversation in a crowded room
Tactual perception: a review of experimental variables and procedures
This paper reviews literature on tactual perception. Throughout this review we will highlight some of the most relevant variables in touch literature: interaction between touch and other senses; type of stimuli, from abstract stimuli such as vibrations, to two- and three-dimensional stimuli, also considering concrete stimuli such as the relation between familiar and unfamiliar stimuli or the haptic perception of faces; type of participants, separating studies with blind participants, studies with children and adults, and an analysis of sex differences in performance; and finally, type of tactile exploration, considering conditions of active and passive touch, the relevance of movement in touch and the relation between exploration and time. This review intends to present an organised overview of the main variables in touch experiments, attending to the main findings described in literature, to guide the design of future works on tactual perception and memory.This work was funded by the Portuguese “Foundation for Science and Technology” through PhD scholarship SFRH/BD/35918/2007
Mutations of the Mouse ELMO Domain Containing 1 Gene (Elmod1) Link Small GTPase Signaling to Actin Cytoskeleton Dynamics in Hair Cell Stereocilia
Stereocilia, the modified microvilli projecting from the apical surfaces of the sensory hair cells of the inner ear, are essential to the mechanoelectrical transduction process underlying hearing and balance. The actin-filled stereocilia on each hair cell are tethered together by fibrous links to form a highly patterned hair bundle. Although many structural components of hair bundles have been identified, little is known about the signaling mechanisms that regulate their development, morphology, and maintenance. Here, we describe two naturally occurring, allelic mutations that result in hearing and balance deficits in mice, named roundabout (rda) and roundabout-2J (rda2J). Positional cloning identified both as mutations of the mouse ELMO domain containing 1 gene (Elmod1), a poorly characterized gene with no previously reported mutant phenotypes. The rda mutation is a 138 kb deletion that includes exons 1–5 of Elmod1, and rda2J is an intragenic duplication of exons 3–8 of Elmod1. The deafness associated with these mutations is caused by cochlear hair cell dysfunction, as indicated by conspicuous elongations and fusions of inner hair cell stereocilia and progressive degeneration of outer hair cell stereocilia. Mammalian ELMO-family proteins are known to be involved in complexes that activate small GTPases to regulate the actin cytoskeleton during phagocytosis and cell migration. ELMOD1 and ELMOD2 recently were shown to function as GTPase-activating proteins (GAPs) for the Arf family of small G proteins. Our finding connecting ELMOD1 deficiencies with stereocilia dysmorphologies thus establishes a link between the Ras superfamily of small regulatory GTPases and the actin cytoskeleton dynamics of hair cell stereocilia
- …